IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v96y2019i2d10.1007_s11069-018-03566-0.html
   My bibliography  Save this article

GIS-based vulnerability mapping of the coastal stretch from Puri to Konark in Odisha using analytical hierarchy process

Author

Listed:
  • Rashmisikha Behera

    (Siksha O’ Anusandhan University)

  • Abhipsa Kar

    (Siksha O’ Anusandhan University)

  • Manas Ranjan Das

    (Siksha O’ Anusandhan University)

  • Prachi Prava Panda

    (Siksha O’ Anusandhan University)

Abstract

The 485-km-long coastline of Odisha, a state in the northeastern part of the Indian peninsula, is potentially vulnerable to several disaster events that take place frequently. In addition to threats due to natural hazards, these coastal regions also face immense population and developmental pressures. The increase in the intensity and frequency of cyclones and accelerated sea level rise related to increased sea surface temperature have led to flooding, coastal erosion and shoreline retreat causing damage to coastal ecosystems and resources in these regions. In recognition of these risks, the present work demonstrates a GIS-based approach to assess the vulnerability of the 187-km stretch from Puri to Konark out of the total 485-km coastline using analytical hierarchy process (AHP). The present study focuses on computation of integrated coastal vulnerability index which is an integration of physical vulnerability index, geotechnical vulnerability index and social vulnerability index using AHP taking nine risk variables into consideration. An attempt has been made to demonstrate the state-of-the-art microzonation of the coastal stretch between Puri and Konark based on the vulnerability indices using geographical information system.

Suggested Citation

  • Rashmisikha Behera & Abhipsa Kar & Manas Ranjan Das & Prachi Prava Panda, 2019. "GIS-based vulnerability mapping of the coastal stretch from Puri to Konark in Odisha using analytical hierarchy process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 731-751, March.
  • Handle: RePEc:spr:nathaz:v:96:y:2019:i:2:d:10.1007_s11069-018-03566-0
    DOI: 10.1007/s11069-018-03566-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-03566-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-03566-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Sudha Rani & A. Satyanarayana & Prasad Bhaskaran, 2015. "Coastal vulnerability assessment studies over India: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 405-428, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Atiq Ur Rehman Tariq & Cheuk Yin Wai & Nitin Muttil, 2020. "Vulnerability Assessment of Ubiquitous Cities Using the Analytic Hierarchy Process," Future Internet, MDPI, vol. 12(12), pages 1-21, December.
    2. Pramod K. Singh & Konstantinos Papageorgiou & Harpalsinh Chudasama & Elpiniki I. Papageorgiou, 2019. "Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem," Sustainability, MDPI, vol. 11(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    2. Komali Kantamaneni & Sigamani Panneer & N.N.V. Sudha Rani & Udhayakumar Palaniswamy & Lekha D. Bhat & Carlos Jimenez-Bescos & Louis Rice, 2022. "Impact of Coastal Disasters on Women in Urban Slums: A New Index," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    3. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    4. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    5. Yashna Devi Beeharry & Girish Bekaroo & Chandradeo Bokhoree & Michael Robert Phillips, 2022. "Impacts of sea-level rise on coastal zones of Mauritius: insights following calculation of a coastal vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 27-55, October.
    6. J. Joyson Joe Jeevamani & P. Priya & J. Amali Infantina & K. R. Abhilash & Durga Prasad Behera & V. Deepak Samuel & R. Soundararajan & R. Purvaja & R. Ramesh, 2021. "An integrated approach to assess coastal vulnerability versus fisheries livelihood sustainability: Strategies for climate change adaptation in Sindhudurg, west coast of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4011-4042, March.
    7. Yu Duan & Junnan Xiong & Weiming Cheng & Nan Wang & Yi Li & Yufeng He & Jun Liu & Wen He & Gang Yang, 2022. "Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 269-294, January.
    8. Akshansha Chauhan & Rajesh Kumar & Ramesh P. Singh, 2018. "Coupling between Land–Ocean–Atmosphere and Pronounced Changes in Atmospheric/Meteorological Parameters Associated with the Hudhud Cyclone of October 2014," IJERPH, MDPI, vol. 15(12), pages 1-18, December.
    9. Rabia Yahia Meddah & Tarik Ghodbani & Rachida Senouci & Walid Rabehi & Lia Duarte & Ana Cláudia Teodoro, 2023. "Estimation of the Coastal Vulnerability Index Using Multi-Criteria Decision Making: The Coastal Social–Ecological System of Rachgoun, Western Algeria," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    10. Babita Jangir & A. N. V. Satyanarayana & S. Swati & C. Jayaram & V. M. Chowdary & V. K. Dadhwal, 2016. "Delineation of spatio-temporal changes of shoreline and geomorphological features of Odisha coast of India using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1437-1455, July.
    11. M. Dinesh Kumar & Shubham Tandon & Nitin Bassi & Pradipta Kumar Mohanty & Saurabh Kumar & Manish Mohandas, 2022. "A framework for risk-based assessment of urban floods in coastal cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2035-2057, February.
    12. Xuchao Yang & Lin Lin & Yizhe Zhang & Tingting Ye & Qian Chen & Cheng Jin & Guanqiong Ye, 2019. "Spatially Explicit Assessment of Social Vulnerability in Coastal China," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    13. Meenu Rani & Sufia Rehman & Haroon Sajjad & B. S. Chaudhary & Jyoti Sharma & Sandeep Bhardwaj & Pavan Kumar, 2018. "Assessing coastal landscape vulnerability using geospatial techniques along Vizianagaram–Srikakulam coast of Andhra Pradesh, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 711-725, November.
    14. Chandra Shekhar Dwivedi & Shiva Teja Pampattiwar & Arvind Chandra Pandey & Bikash Ranjan Parida & Debashis Mitra & Navneet Kumar, 2023. "Characterization of the Coastal Vulnerability in Different Geological Settings: A Comparative Study on Kerala and Tamil Nadu Coasts Using FuzzyAHP," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    15. Bingjun Liu & Yeying Liao & Shulan Yan & Hengheng Yan, 2017. "Dynamic characteristics of saltwater intrusion in the Pearl River Estuary, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1097-1117, December.
    16. V. P. Sathiya Bama & S. Rajakumari & R. Ramesh, 2020. "Coastal vulnerability assessment of Vedaranyam swamp coast based on land use and shoreline dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 829-842, January.
    17. Mary O. Oloyede & Akan B. Williams & Godwin O. Ode & Nsikak U. Benson, 2022. "Coastal Vulnerability Assessment: A Case Study of the Nigerian Coastline," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    18. Komali Kantamaneni & Louis Rice & Komali Yenneti & Luiza C. Campos, 2020. "Assessing the Vulnerability of Agriculture Systems to Climate Change in Coastal Areas: A Novel Index," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
    19. Angeliki Peponi & Paulo Morgado & Jorge Trindade, 2019. "Combining Artificial Neural Networks and GIS Fundamentals for Coastal Erosion Prediction Modeling," Sustainability, MDPI, vol. 11(4), pages 1-14, February.
    20. Namir Domingos Raimundo Lopes & Tianxin Li & Nametso Matomela & Rui Moutinho Sá, 2022. "Coastal vulnerability assessment based on multi-hazards and bio-geophysical parameters. case study - northwestern coastline of Guinea-Bissau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 989-1013, October.

    More about this item

    Keywords

    AHP; GVI; PVI; SVI; ICVI; Microzonation; GIS;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:96:y:2019:i:2:d:10.1007_s11069-018-03566-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.