IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v90y2018i3d10.1007_s11069-017-3107-9.html
   My bibliography  Save this article

Identifying drought- and flood-prone areas based on significant changes in daily precipitation over Iran

Author

Listed:
  • Mohammad Darand

    (University of Kurdistan)

  • Mohammad M. Sohrabi

    (University of California)

Abstract

Variations in frequency and intensity of extreme events have substantial impact on water resources and environment, which in turn are reflected on agriculture, society, and economy. We assessed spatiotemporal changes in pattern of daily precipitation to identify drought- and flood-prone areas of Iran. To do this, we generated gridded daily precipitation for the period of 1962–2013 over Iran using measured daily precipitation and the Kriging approach. We applied 11 precipitation indices that were stated by the Expert Team on Climate Change Detection and Indices (ETCCDI) to identify significant changes in frequency and intensity of extreme precipitation events. According to significant changes of these 11 precipitation indices, drought- and flood-prone areas of Iran were, then, detected. We observed significant changes in pattern of daily precipitation over more than half of the country. 40% of the country, which were located in the elevated regions of Iran, particularly along Zagros Mountain, was identified as flood-prone areas. As a result, in these regions, there is a need for flood risk management based on changes in stormwater events such as runoff generated from rain on snow and snowmelt events. In addition, we detected drought-prone areas in large portion of the northwest of Iran and in the low elevated regions of the country that have semiarid or arid climate. This suggests that it is necessary to prepare a long-term drought plan to mitigate impacts of severe drought events.

Suggested Citation

  • Mohammad Darand & Mohammad M. Sohrabi, 2018. "Identifying drought- and flood-prone areas based on significant changes in daily precipitation over Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1427-1446, February.
  • Handle: RePEc:spr:nathaz:v:90:y:2018:i:3:d:10.1007_s11069-017-3107-9
    DOI: 10.1007/s11069-017-3107-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3107-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3107-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jae Ryu & Mohammad Sohrabi & Anil Acharya, 2014. "Toward Mapping Gridded Drought Indices to Evaluate Local Drought in a Rapidly Changing Global Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3859-3869, September.
    2. Curriero, F.C. & Patz, J.A. & Rose, J.B. & Lele, S., 2001. "The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948-1994," American Journal of Public Health, American Public Health Association, vol. 91(8), pages 1194-1199.
    3. Chad Cheng & Heather Auld & Qian Li & Guilong Li, 2012. "Possible impacts of climate change on extreme weather events at local scale in south–central Canada," Climatic Change, Springer, vol. 112(3), pages 963-979, June.
    4. Tayeb Raziei & Jamal Daryabari & Isabella Bordi & Reza Modarres & Luis Pereira, 2014. "Spatial patterns and temporal trends of daily precipitation indices in Iran," Climatic Change, Springer, vol. 124(1), pages 239-253, May.
    5. Mohammad Sohrabi & Jae Ryu & John Abatzoglou & John Tracy, 2013. "Climate extreme and its linkage to regional drought over Idaho, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 653-681, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Darand & Farshad Pazhoh, 2022. "Spatiotemporal changes in precipitation concentration over Iran during 1962–2019," Climatic Change, Springer, vol. 173(3), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wuxia Bi & Baisha Weng & Zhe Yuan & Yuheng Yang & Ting Xu & Dengming Yan & Jun Ma, 2019. "Evolution of Drought–Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin," IJERPH, MDPI, vol. 16(5), pages 1-17, February.
    2. Supachai Nakapan & Nitin Kumar Tripathi & Taravudh Tipdecho & Marc Souris, 2012. "Spatial Diffusion of Influenza Outbreak-Related Climate Factors in Chiang Mai Province, Thailand," IJERPH, MDPI, vol. 9(11), pages 1-19, October.
    3. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    4. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    5. Richard Harvey & Heather Murphy & Edward McBean & Bahram Gharabaghi, 2015. "Using Data Mining to Understand Drinking Water Advisories in Small Water Systems: a Case Study of Ontario First Nations Drinking Water Supplies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5129-5139, November.
    6. Karel Mulder, 2019. "Future Options for Sewage and Drainage Systems Three Scenarios for Transitions and Continuity," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    7. Kathleen F. Bush & Cheryl L. Fossani & Shi Li & Bhramar Mukherjee & Carina J. Gronlund & Marie S. O'Neill, 2014. "Extreme Precipitation and Beach Closures in the Great Lakes Region: Evaluating Risk among the Elderly," IJERPH, MDPI, vol. 11(2), pages 1-19, February.
    8. Zhiwei Xu & Perry E. Sheffield & Wenbiao Hu & Hong Su & Weiwei Yu & Xin Qi & Shilu Tong, 2012. "Climate Change and Children’s Health—A Call for Research on What Works to Protect Children," IJERPH, MDPI, vol. 9(9), pages 1-19, September.
    9. Wuxia Bi & Baisha Weng & Zhe Yuan & Mao Ye & Cheng Zhang & Yu Zhao & Dengming Yan & Ting Xu, 2018. "Evolution Characteristics of Surface Water Quality Due to Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin," IJERPH, MDPI, vol. 15(8), pages 1-18, August.
    10. Jean C. Bikomeye & Sima Namin & Chima Anyanwu & Caitlin S. Rublee & Jamie Ferschinger & Ken Leinbach & Patricia Lindquist & August Hoppe & Lawrence Hoffman & Justin Hegarty & Dwayne Sperber & Kirsten , 2021. "Resilience and Equity in a Time of Crises: Investing in Public Urban Greenspace Is Now More Essential Than Ever in the US and Beyond," IJERPH, MDPI, vol. 18(16), pages 1-39, August.
    11. Yohann Moanahere Chiu & Fateh Chebana & Belkacem Abdous & Diane Bélanger & Pierre Gosselin, 2021. "Cardiovascular Health Peaks and Meteorological Conditions: A Quantile Regression Approach," IJERPH, MDPI, vol. 18(24), pages 1-14, December.
    12. Wei Xie & Qi Cui & Tariq Ali, 2019. "Role of market agents in mitigating the climate change effects on food economy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1215-1231, December.
    13. Gordon L. Nichols & Yvonne Andersson & Elisabet Lindgren & Isabelle Devaux & Jan C. Semenza, 2014. "European Monitoring Systems and Data for Assessing Environmental and Climate Impacts on Human Infectious Diseases," IJERPH, MDPI, vol. 11(4), pages 1-43, April.
    14. Reza Erfani & Luc Chouinard & Frédéric Légeron, 2016. "Reliability analysis with an icing model for estimating extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 415-439, May.
    15. Yee, Susan H. & Paulukonis, E. & Simmons, C. & Russell, M. & Fulford, R. & Harwell, L. & Smith, L.M., 2021. "Projecting effects of land use change on human well-being through changes in ecosystem services," Ecological Modelling, Elsevier, vol. 440(C).
    16. Mahin Al Nahian, 2023. "Public Health Impact and Health System Preparedness within a Changing Climate in Bangladesh: A Scoping Review," Challenges, MDPI, vol. 14(1), pages 1-28, January.
    17. Kathleen A. Alexander & Marcos Carzolio & Douglas Goodin & Eric Vance, 2013. "Climate Change is Likely to Worsen the Public Health Threat of Diarrheal Disease in Botswana," IJERPH, MDPI, vol. 10(4), pages 1-29, March.
    18. Aude-Valérie Jung & Pierre Le Cann & Benoit Roig & Olivier Thomas & Estelle Baurès & Marie-Florence Thomas, 2014. "Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change," IJERPH, MDPI, vol. 11(4), pages 1-19, April.
    19. Wang, Limin & Kanji, Shireen & Bandyopadhyay, Sushenjit, 2009. "The health impact of extreme weather events in Sub-Saharan Africa," Policy Research Working Paper Series 4979, The World Bank.
    20. Ercan Yeşilırmak & Levent Atatanır, 2016. "Spatiotemporal variability of precipitation concentration in western Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 687-704, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:90:y:2018:i:3:d:10.1007_s11069-017-3107-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.