IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v81y2016i1d10.1007_s11069-015-2082-2.html
   My bibliography  Save this article

A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050

Author

Listed:
  • Michele Marconi

    (Università Politecnica delle Marche)

  • Beatrice Gatto

    (Università Politecnica delle Marche)

  • Michele Magni

    (Università Politecnica delle Marche)

  • Fausto Marincioni

    (Università Politecnica delle Marche)

Abstract

This study discusses the application of a multiple logistic regression analysis in Khao Chai Son and Mueang Phatthalung districts (Phatthalung Province in southern Thailand), which were the two worst flooded districts in the 2011 inundation. The aim is to test an easy, rapid, and cost-effective method to asses flood susceptibility in a data-poor country. Climatic, topographic, and geological data have been overlaid with those of the flood events occurred in the study area from 2007 to 2011. Results showed a positive spatial correlation between the northeast monsoon precipitation and flooding. Moreover, using the rainfall projection of the U.S. National Center for Atmospheric Research the proposed model forecasts a sharp increase of flood susceptibility in the study area by the year 2050. Given the versatility of such model, local governments could easily use it to define the areas in their territories most exposed to flood hazard and timely implement risk reduction policies and practices.

Suggested Citation

  • Michele Marconi & Beatrice Gatto & Michele Magni & Fausto Marincioni, 2016. "A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 329-346, March.
  • Handle: RePEc:spr:nathaz:v:81:y:2016:i:1:d:10.1007_s11069-015-2082-2
    DOI: 10.1007/s11069-015-2082-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-015-2082-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-015-2082-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Emma Soane & Iljana Schubert & Peter Challenor & Rebecca Lunn & Sunitha Narendran & Simon Pollard, 2010. "Flood Perception and Mitigation: The Role of Severity, Agency, and Experience in the Purchase of Flood Protection, and the Communication of Flood Information," Environment and Planning A, , vol. 42(12), pages 3023-3038, December.
    2. James M Jeffers, 2013. "Double Exposures and Decision Making: Adaptation Policy and Planning in Ireland's Coastal Cities during a Boom—Bust Cycle," Environment and Planning A, , vol. 45(6), pages 1436-1454, June.
    3. Y. Yang & Patrick Ray & Casey Brown & Abedalrazq Khalil & Winston Yu, 2015. "Estimation of flood damage functions for river basin planning: a case study in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2773-2791, February.
    4. Holger Cammerer & Annegret Thieken & Peter Verburg, 2013. "Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1243-1270, September.
    5. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jihye Ha & Jung Eun Kang, 2022. "Assessment of flood-risk areas using random forest techniques: Busan Metropolitan City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2407-2429, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Marconi & Beatrice Gatto & Michele Magni & Fausto Marincioni, 2016. "A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 329-346, March.
    2. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    3. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    4. Mery Biswas & Adrija Raha, 2024. "Assessment of flood hazard along the N-S section of North Bengal plains, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2333-2348, February.
    5. Ying Li & Suiliang Huang, 2015. "Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    6. Jiang Li & Zhuoying Tan & Naigen Tan & Aboubakar Siddique & Jianshu Liu & Fenglin Wang & Wantao Li, 2025. "Machine Learning Method Application to Detect Predisposing Factors to Open-Pit Landslides: The Sijiaying Iron Mine Case Study," Land, MDPI, vol. 14(4), pages 1-27, March.
    7. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    8. Kamila Pawluszek & Andrzej Borkowski, 2017. "Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 919-952, March.
    9. Farzaneh Noroozi & Gholamabbas Ghanbarian & Roja Safaeian & Hamid Reza Pourghasemi, 2024. "Forest fire mapping: a comparison between GIS-based random forest and Bayesian models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6569-6592, May.
    10. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    11. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    12. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    13. Nussaïbah B. Raja & Ihsan Çiçek & Necla Türkoğlu & Olgu Aydin & Akiyuki Kawasaki, 2017. "Landslide susceptibility mapping of the Sera River Basin using logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1323-1346, February.
    14. Moung-Jin Lee & Wonkyong Song & Saro Lee, 2015. "Habitat Mapping of the Leopard Cat ( Prionailurus bengalensis ) in South Korea Using GIS," Sustainability, MDPI, vol. 7(4), pages 1-21, April.
    15. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    16. Chen Cao & Jianping Chen & Wen Zhang & Peihua Xu & Lianjing Zheng & Chun Zhu, 2019. "Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing," IJERPH, MDPI, vol. 16(15), pages 1-19, August.
    17. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    18. Thomas Beery, 2018. "Engaging the Private Homeowner: Linking Climate Change and Green Stormwater Infrastructure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    19. Mustafa, Ahmed & Cools, Mario & Saadi, Ismaïl & Teller, Jacques, 2017. "Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)," Land Use Policy, Elsevier, vol. 69(C), pages 529-540.
    20. Ahmed Cemiloglu & Licai Zhu & Agab Bakheet Mohammednour & Mohammad Azarafza & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm," Land, MDPI, vol. 12(7), pages 1-20, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:81:y:2016:i:1:d:10.1007_s11069-015-2082-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.