IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i3p1475-1482.html
   My bibliography  Save this article

Application of a nonlinear model in landfall number forecasting for tropical cyclones in China

Author

Listed:
  • Lihua Feng
  • Gaoyuan Luo

Abstract

Meteorological phenomena evolve according to both external influences and their own internal physical processes. Nevertheless, multivariate analysis ignores the evolution of individual meteorological events overtime, while time series analysis does not make full use of the implicit information on influencing factors. Instead, the threshold autoregressive model considers not only the additive effects of influencing factors, but also the processes controlling the evolution of the meteorological phenomena. Meanwhile, this approach deals with the nonlinear problems of meteorological processes through piecewise linearization, yielding improved fit to observations and better forecasts. The pooled variance, mean square error, and maximum fitted error of TARSO(2, (1, 1), (1, 3)) are all smaller than those obtained using TAR(2, 1, 2). The errors of the landfall number associated with TARSO(2, (1, 1), (1, 3)) are smaller than those associated with TAR(2, 1, 2). At present, however, time series data for meteorological processes are generally short, such that the corresponding information system is incomplete. Therefore, extrapolation should not be too far-ranging. It is strongly suggested that the current information system should be supplemented by the addition of new information each year, in the hope of improving future model accuracy and forecast skill. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Lihua Feng & Gaoyuan Luo, 2014. "Application of a nonlinear model in landfall number forecasting for tropical cyclones in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1475-1482, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:3:p:1475-1482
    DOI: 10.1007/s11069-014-1146-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1146-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1146-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Yin & Zhane Yin & Shiyuan Xu, 2013. "Composite risk assessment of typhoon-induced disaster for China’s coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1423-1434, December.
    2. Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2013. "Estimation in threshold autoregressive models with a stationary and a unit root regime," Journal of Econometrics, Elsevier, vol. 172(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jiti & Kanaya, Shin & Li, Degui & Tjøstheim, Dag, 2015. "Uniform Consistency For Nonparametric Estimators In Null Recurrent Time Series," Econometric Theory, Cambridge University Press, vol. 31(5), pages 911-952, October.
    2. Biqing Cai & Dag Tjøstheim, 2015. "Nonparametric Regression Estimation for Multivariate Null Recurrent Processes," Econometrics, MDPI, vol. 3(2), pages 1-24, April.
    3. Bravo, Francesco & Li, Degui & Tjøstheim, Dag, 2021. "Robust nonlinear regression estimation in null recurrent time series," Journal of Econometrics, Elsevier, vol. 224(2), pages 416-438.
    4. Victor V. Konev & Sergey E. Vorobeychikov, 2022. "Fixed accuracy estimation of parameters in a threshold autoregressive model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 685-711, August.
    5. Francesco Giordano & Marcella Niglio & Cosimo Damiano Vitale, 2017. "Unit Root Testing in Presence of a Double Threshold Process," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 539-556, June.
    6. Jiti Gao & Maxwell King, 2012. "An Improved Nonparametric Unit-Root Test," Monash Econometrics and Business Statistics Working Papers 16/12, Monash University, Department of Econometrics and Business Statistics.
    7. Li, Degui & Li, Runze, 2016. "Local composite quantile regression smoothing for Harris recurrent Markov processes," Journal of Econometrics, Elsevier, vol. 194(1), pages 44-56.
    8. Lianying Yao & Jinchi Shen & Fuying Zhang & Xinbing Gu & Shuli Jiang, 2021. "Influence of Environmental Values on the Typhoon Risk Perceptions of High School Students: A Case Study in Ningbo, China," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    9. Wei Xie & Wen Nie & Pooya Saffari & Luis F. Robledo & Pierre-Yves Descote & Wenbin Jian, 2021. "Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 931-948, October.
    10. Gao, Jiti, 2012. "Identification, Estimation and Specification in a Class of Semi-Linear Time Series Models," MPRA Paper 39256, University Library of Munich, Germany, revised 14 May 2012.
    11. Yaxing Yang & Shiqing Ling, 2018. "A Note On The Lse Of Three-Regime Tar Model With An Infinite Variance," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-13, June.
    12. Yanjun Wang & Shanshan Wen & Xiucang Li & Fischer Thomas & Buda Su & Run Wang & Tong Jiang, 2016. "Spatiotemporal distributions of influential tropical cyclones and associated economic losses in China in 1984–2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2009-2030, December.
    13. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    14. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.
    15. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    16. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    17. Xiao-Chen Yuan & Bao-Jun Tang & Yi-Ming Wei & Xiao-Jie Liang & Hao Yu & Ju-Liang Jin, 2015. "China’s regional drought risk under climate change: a two-stage process assessment approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 667-684, March.
    18. Xiao Fengjin & Liu Qiufeng, 2023. "An evaluation of vegetation loss due to the super typhoon Sarika in Hainan Island of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1677-1695, January.
    19. Adam Pártl & David Vačkář & Blanka Loučková & Eliška Krkoška Lorencová, 2017. "A spatial analysis of integrated risk: vulnerability of ecosystem services provisioning to different hazards in the Czech Republic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1185-1204, December.
    20. Joseph Ngatchou-Wandji & Madan L. Puri & Michel Harel & Echarif Elharfaoui, 2019. "Testing nonstationary and absolutely regular nonlinear time series models," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 557-593, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:3:p:1475-1482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.