IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i3p1293-1316.html
   My bibliography  Save this article

Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst

Author

Listed:
  • D. Petrakov
  • O. Tutubalina
  • A. Aleinikov
  • S. Chernomorets
  • S. Evans
  • V. Kidyaeva
  • I. Krylenko
  • S. Norin
  • M. Shakhmina
  • I. Seynova

Abstract

Glacier lakes pose threat to downstream settlements and infrastructure. In recent decades the number and area of lakes have been growing at an accelerating rate due to worldwide glacier shrinkage. In the Russian Caucasus this process is understudied. We present results obtained during a 12-year (1999–2010) continuous field monitoring of the Bashkara proglacial lakes group, which we identified as the place with the highest GLOF risk in the region. Recession of the parent Bashkara Glacier was the main driver of the rapid expansion of the lower Lake Lapa. The upper Lake Bashkara has not been enlarging, but its water level has shown significant inter- and intra-annual fluctuations. The lake outburst probability has increased in recent years, and in 2008 we observed surface overflow over the moraine dam. Taking into account that in the late 1950s lake outbursts at this site led to large-scale glacial debris flows, we have simulated a potential outburst using River and FLO-2D software and carried out hazard zonation. An early warning system has been designed and established at Lake Bashkara, and measures to mitigate risk have been proposed. Rapid change of proglacial lakes requires regular monitoring in ‘hot spot’ areas where the GLOF hazard is high and is dynamically changing. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • D. Petrakov & O. Tutubalina & A. Aleinikov & S. Chernomorets & S. Evans & V. Kidyaeva & I. Krylenko & S. Norin & M. Shakhmina & I. Seynova, 2012. "Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1293-1316, April.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:3:p:1293-1316
    DOI: 10.1007/s11069-011-9983-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9983-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9983-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Kattelmann, 2003. "Glacial Lake Outburst Floods in the Nepal Himalaya: A Manageable Hazard?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 145-154, January.
    2. Sarah C. B. Raper & Roger J. Braithwaite, 2006. "Low sea level rise projections from mountain glaciers and icecaps under global warming," Nature, Nature, vol. 439(7074), pages 311-313, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susanne Schmidt & Marcus Nüsser & Ravi Baghel & Juliane Dame, 2020. "Cryosphere hazards in Ladakh: the 2014 Gya glacial lake outburst flood and its implications for risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2071-2095, December.
    2. Fjóla Sigtryggsdóttir & Jónas Snæbjörnsson & Lars Grande & Ragnar Sigbjörnsson, 2015. "Methodology for geohazard assessment for hydropower projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1299-1331, November.
    3. Veniamin Perov & Sergey Chernomorets & Olga Budarina & Elena Savernyuk & Tatiana Leontyeva, 2017. "Debris flow hazards for mountain regions of Russia: regional features and key events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 199-235, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guili Sun & Yaning Chen & Weihong Li & Cunde Pan & Jiang Li & Yuhui Yang, 2013. "Spatial distribution of the extreme hydrological events in Xinjiang, north-west of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 483-495, June.
    2. Madhav L Khandekar, 2009. "New Perspective on Global Warming & Sea Level Rise: Modest Future Rise with Reduced Threat," Energy & Environment, , vol. 20(7), pages 1067-1074, November.
    3. Timár, Barnabás, 2023. "A klímavédelmi események hatása a köztudatra és a tőkepiacra. Empirikus vizsgálat Google-trends- és ETF-adatokon [The impact of climate events on public perception and capital markets. An empirical," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 713-745.
    4. Mark Carey & Christian Huggel & Jeffrey Bury & César Portocarrero & Wilfried Haeberli, 2012. "An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru," Climatic Change, Springer, vol. 112(3), pages 733-767, June.
    5. Xuan Yu & Manhong Shen & Di Wang & Bernadette Tadala Imwa, 2019. "Does the Low-Carbon Pilot Initiative Reduce Carbon Emissions? Evidence from the Application of the Synthetic Control Method in Guangdong Province," Sustainability, MDPI, vol. 11(14), pages 1-13, July.
    6. Wenshuo Dong & Renhua Chen & Xuelin Ba & Suling Zhu, 2023. "Trend Forecasting of Public Concern about Low Carbon Based on Comprehensive Baidu Index and Its Relationship with CO 2 Emissions: The Case of China," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    7. R. K. Sharma & Pranay Pradhan & N. P. Sharma & D. G. Shrestha, 2018. "Remote sensing and in situ-based assessment of rapidly growing South Lhonak glacial lake in eastern Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 393-409, August.
    8. Fjóla Sigtryggsdóttir & Jónas Snæbjörnsson & Lars Grande & Ragnar Sigbjörnsson, 2015. "Methodology for geohazard assessment for hydropower projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1299-1331, November.
    9. Lasafam Iturrizaga, 2019. "Historical beacon fire lines as early warning systems for glacier lake outbursts in the Hindu Kush–Karakoram Mountains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 39-70, October.
    10. Santosh Pathak & Hari Krishna Panta & Thaneshwar Bhandari & Krishna P. Paudel, 2020. "Flood vulnerability and its influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2175-2196, December.
    11. Patrick J. Michaels, 2008. "Evidence for “Publication Bias†concerning Global Warming in Science and Nature," Energy & Environment, , vol. 19(2), pages 287-301, March.
    12. Gautam, Mahesh R. & Timilsina, Govinda R. & Acharya, Kumud, 2013. "Climate change in the Himalayas : current state of knowledge," Policy Research Working Paper Series 6516, The World Bank.
    13. Chi-Chung Chen & Bruce McCarl & Ching-Cheng Chang, 2012. "Climate change, sea level rise and rice: global market implications," Climatic Change, Springer, vol. 110(3), pages 543-560, February.
    14. Bohumír Janský & Zbyněk Engel & Miroslav Šobr & Vojtěch Beneš & Karel Špaček & Serguei Yerokhin, 2009. "The evolution of Petrov lake and moraine dam rupture risk (Tien-Shan, Kyrgyzstan)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 83-96, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:3:p:1293-1316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.