IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i7d10.1007_s11069-025-07116-3.html
   My bibliography  Save this article

Urban rainstorm flood rapid simulation in plain river network area based on cellular automata

Author

Listed:
  • Yi Pan

    (Nanjing University)

  • Feng Zhou

    (Yancheng Institude of Technology)

  • Qiang Wang

    (Nanjing University)

  • Chengwei Tong

    (Nanjing University)

  • Chen Song

    (Nanjing University)

  • Lachun Wang

    (Nanjing University)

Abstract

Choosing a flood simulation model with acceptable accuracy may be the first step towards achieving urban flood management in plain river network area. Hydrologic-hydrodynamic coupling models require various data that are difficult to obtain, and simplified models such as cellular automata (CA) appear. The purpose of this research is to examine the performance and uncertainty of CA model for simulating flood in plain river network region, and to explore the management of urban waterlogging by scenarios analysis. The results show that: (1) The CA model’s performance is all within an acceptable range, with average correlation coefficient (R) and Nash–Sutcliffe efficiency coefficient of 0.88 and 0.87; (2) Elevation had the greatest influence on the model simulation result, followed by roughness; (3) The model climate change hydrological response analysis revealed that, the suburbs of Yinzhou’s southeast plain were more susceptible to flooding than the urbans; (4) According to the urbanization hydrological response study, maintaining the land permeability rate and the river network water surface rate both have a positive effect on reducing the degree of flooding. In light rain, the influence of river network change (1.37%) is stronger than land use change (0.18%). While in heavy rain, the effect of both is comparatively weaker, less than 1%. (5) Low-impact development measures are effective in controlling urban flooding. The shorter the storm recurrence period, the greater the weakening effect. In this paper, the result and modeling process of CA model are investigated to provide a new option for flood assessment and management in plain river network area.

Suggested Citation

  • Yi Pan & Feng Zhou & Qiang Wang & Chengwei Tong & Chen Song & Lachun Wang, 2025. "Urban rainstorm flood rapid simulation in plain river network area based on cellular automata," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 7891-7914, April.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07116-3
    DOI: 10.1007/s11069-025-07116-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07116-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07116-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuang Yao & Nengcheng Chen & Wenying Du & Chao Wang & Cuizhen Chen, 2021. "A Cellular Automata Based Rainfall-Runoff Model for Urban Inundation Analysis Under Different Land Uses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1991-2006, April.
    2. Tugrul Varol & Ayhan Atesoglu & Halil Baris Ozel & Mehmet Cetin, 2023. "Copula-based multivariate standardized drought index (MSDI) and length, severity, and frequency of hydrological drought in the Upper Sakarya Basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3669-3683, April.
    3. Gavin D. Madakumbura & Chad W. Thackeray & Jesse Norris & Naomi Goldenson & Alex Hall, 2021. "Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Yanxia Shen & Chunbo Jiang, 2023. "A comprehensive review of watershed flood simulation model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 875-902, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siwei Cheng & Mingxiang Yang & Chenglin Li & Houlei Xu & Changli Chen & Dewei Shu & Yunzhong Jiang & Yunpeng Gui & Ningpeng Dong, 2024. "An Improved Coupled Hydrologic-Hydrodynamic Model for Urban Flood Simulations Under Varied Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5523-5539, November.
    2. Jisesh Sethunadh & F. W. Letson & R. J. Barthelmie & S. C. Pryor, 2023. "Assessing the impact of global warming on windstorms in the northeastern United States using the pseudo-global-warming method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2807-2834, July.
    3. Adnan Dehghani & Fatemehsadat Mortazavizadeh & Amin Dehghani & Muhammad Bin Rahmat & Hadi Galavi & David Bolonio & Jing Lin Ng & Vahid Rezaverdinejad & Majid Mirzaei, 2025. "Multi-model assessment of climate change impacts on drought characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 6069-6084, March.
    4. Giuseppe Craparo & Elisa Isabel Cano Montero & Jesús Fernando Santos Peñalver, 2024. "Trends in the circular economy applied to the agricultural sector in the framework of the SDGs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26699-26729, October.
    5. Hu, Miao & Bian, Yongtao & Ji, Guangxing, 2025. "Assessing the sustainability of China's coastal regions: A perspective on local coupling and telecoupling," Ecological Modelling, Elsevier, vol. 501(C).
    6. Jiang, Yaoyao & Li, Hengkai & Zhang, Zhiwei & Ren, Guogang & Zhang, Jianying, 2025. "Enhancing ecological sustainability in ion-adsorption rare earth mining areas: A multi-scale model for assessing spatiotemporal dynamics and ecological resilience," Ecological Modelling, Elsevier, vol. 502(C).
    7. Ralph Trancoso & Jozef Syktus & Richard P. Allan & Jacky Croke & Ove Hoegh-Guldberg & Robin Chadwick, 2024. "Significantly wetter or drier future conditions for one to two thirds of the world’s population," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jinping Zhang & Hang Zhang & Hongyuan Fang, 2022. "Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2293-2307, May.
    9. Tolga Barış Terzi & Bihrat Önöz, 2025. "Drought analysis based on nonparametric multivariate standardized drought index in the Seyhan River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(9), pages 11051-11078, May.
    10. Reza Alikhanzadeh & Nazila Kheirkhah & Mohsen Kalantari & Erfan Firuzi, 2024. "Seismic loss assessment of residential buildings in Karaj, Iran, by considering near-source effects using stochastic finite-fault approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3319-3347, March.
    11. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Bartosz Szeląg & Roman Suligowski & Grzegorz Majewski & Przemysław Kowal & Adrian Bralewski & Karolina Bralewska & Ewa Anioł & Wioletta Rogula-Kozłowska & Francesco Paola, 2022. "Application of Multinomial Logistic Regression to Model the Impact of Rainfall Genesis on the Performance of Storm Overflows: Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3699-3714, August.
    13. Yulong Yao & Wei Zhang & Ben Kirtman, 2023. "Increasing impacts of summer extreme precipitation and heatwaves in eastern China," Climatic Change, Springer, vol. 176(10), pages 1-20, October.
    14. Emine Dilek Taylan, 2024. "An Approach for Future Droughts in Northwest Türkiye: SPI and LSTM Methods," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    15. Shasha Song & Isaac R. Santos & Huaming Yu & Faming Wang & William C. Burnett & Thomas S. Bianchi & Junyu Dong & Ergang Lian & Bin Zhao & Lawrence Mayer & Qingzhen Yao & Zhigang Yu & Bochao Xu, 2022. "A global assessment of the mixed layer in coastal sediments and implications for carbon storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Salman Ahmadi & Reza Soodmand Afshar & Mohammad Fathollahy & Kamran Nobakht Vakili, 2023. "Identification of land subsidence hazard in asadabad plain using the PS-InSAR method and its relationship with the geological characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 1157-1178, May.
    17. Faisal Mehraj Wani & Jayaprakash Vemuri, 2025. "Exploring the association of ground motion intensity measures and demand parameters with ANN-based predictive modeling and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8849-8898, April.
    18. Richhild Moessner, 2022. "Effects of Precipitation on Food Consumer Price Inflation," CESifo Working Paper Series 9961, CESifo.
    19. Junfei Chen & Wentong Yang & Wenjie Gong & Xinyu Liu, 2025. "Electricity supply research for ensuring food security in North China during droughts and floods: copula modeling for the water-energy-food nexus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4265-4291, March.
    20. Lindung Zalbuin Mase & Weeradetch Tanapalungkorn & Pakawadee Anussornrajkit & Suched Likitlersuang, 2025. "Assessing liquefaction risk and hazard mapping in a high-seismic region: a case study of Bengkulu City, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(6), pages 6597-6623, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07116-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.