IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i5d10.1007_s11069-024-07005-1.html
   My bibliography  Save this article

Seismic hazard analysis of China’s islands based on Bayesian network

Author

Listed:
  • Jing Jia

    (Ocean University of China)

  • Sailin Deng

    (Ocean University of China)

Abstract

The majority of China’s islands are located at the intersection of the Asian-European and Pacific tectonic plates, which are exposed to intense seismic hazards. The previous research on seismic hazards primarily relied on data on faults, geology, historical earthquakes, etc. A systematic approach using more comprehensive data that considers various factors linked to earthquakes for Seismic Hazard Analysis (SHA) on islands is expected. Based on previous seismic hazard research, we collected and processed essential data for the islands’ SHA, including basic data about islands, fault data, topographic and geomorphological data, seismic zone data, deep tectonic and geophysical field data, and historical seismic data. Then, we established a comprehensive index system comprising 16 indicators to reflect the seismic hazard of islands. Afterwards, considering the uncertain relationships among various indicators, the inherent uncertainty of seismic hazard, and the challenges in integrating multi-source data, we proposed a Bayesian network-based model for islands’ SHA. This model integrated diverse earthquake-related data types and quantified interrelations among the 16 indicators to characterize the islands’ earthquake probabilities. Then, we applied this model to evaluate the seismic hazard levels of 100 representative islands in China’s marine areas. Furthermore, we validated the results by comparing them with the Seismic Ground Motion Parameters Zonation (SGMPZ) of neighboring districts. The method proposed in this study could serve as a reference for the islands’ SHA, which could contribute to earthquake disaster prevention and reduction.

Suggested Citation

  • Jing Jia & Sailin Deng, 2025. "Seismic hazard analysis of China’s islands based on Bayesian network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5527-5570, March.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-07005-1
    DOI: 10.1007/s11069-024-07005-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-07005-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-07005-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shankar Aswani & Ingrid Putten & Sara Miñarro, 2017. "Environmental and social recovery asymmetries to large-scale disturbances in small island communities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 241-262, March.
    2. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    3. Yichuan Peng & Leyi Cheng & Yuming Jiang & Shengxue Zhu, 2021. "Examining Bayesian network modeling in identification of dangerous driving behavior," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-20, August.
    4. Lan, Meng & Zhu, Jiping & Lo, Siuming, 2021. "Hybrid Bayesian network-based landslide risk assessment method for modeling risk for industrial facilities subjected to landslides," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Mark Seemann & Tuna Onur & Denise Cloutier-Fisher, 2011. "Earthquake shaking probabilities for communities on Vancouver Island, British Columbia, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1253-1273, September.
    6. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    7. Penjani Hopkins Nyimbili & Turan Erden & Himmet Karaman, 2018. "Integration of GIS, AHP and TOPSIS for earthquake hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1523-1546, July.
    8. Minakshi Mishra & Abhishek & R. B. S. Yadav & Manisha Sandhu, 2021. "Probabilistic assessment of earthquake hazard in the Andaman–Nicobar–Sumatra region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 313-338, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahin Mohammadi & Fatemeh Balouei & Saeid Amini & Hamidreza Rabiei-Dastjerdi, 2025. "Beyond the richter scale: a fuzzy inference system approach for measuring objective earthquake risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 245-268, January.
    2. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    3. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    4. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    5. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    6. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    8. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    9. Renken, Henk & Mumby, Peter J., 2009. "Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach," Ecological Modelling, Elsevier, vol. 220(9), pages 1305-1314.
    10. repec:osf:osfxxx:qabhj_v1 is not listed on IDEAS
    11. Ömer Kaya & Kadir Diler Alemdar & Tiziana Campisi & Ahmet Tortum & Merve Kayaci Çodur, 2021. "The Development of Decarbonisation Strategies: A Three-Step Methodology for the Suitable Analysis of Current EVCS Locations Applied to Istanbul, Turkey," Energies, MDPI, vol. 14(10), pages 1-21, May.
    12. Verda Kocabas & Suzana Dragicevic, 2013. "Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model," Journal of Geographical Systems, Springer, vol. 15(4), pages 403-426, October.
    13. Ruining Jin & Tam-Tri Le & Thu-Trang Vuong & Thi-Phuong Nguyen & Giang Hoang & Minh-Hoang Nguyen & Quan-Hoang Vuong, 2023. "A Gender Study of Food Stress and Implications for International Students Acculturation," World, MDPI, vol. 4(1), pages 1-15, January.
    14. Li, Yajun & Qian, Cheng & Zhang, Bin & Xu, Nengxiong, 2024. "Reliability and landslide consequence analysis of long heterogeneous soil infrastructure slopes: A parallel computing investigation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    15. Kragt, Marit Ellen & Bennett, Jeffrey W., 2009. "Integrating economic values and catchment modelling," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47956, Australian Agricultural and Resource Economics Society.
    16. Jin, Ruining & Hoang, Giang & Nguyen, Thi-Phuong & Nguyen, Phuong-Tri & Le, Tam-Tri & La, Viet-Phuong & Nguyen, Minh-Hoang & Vuong, Quan-Hoang, 2022. "An analytical framework-based pedagogical method for scholarly community coaching: A proof of concept," OSF Preprints qabhj, Center for Open Science.
    17. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    18. Xiaoliang Xie & Jinxia Zuo & Bingqi Xie & Thomas A. Dooling & Selvarajah Mohanarajah, 2021. "Bayesian network reasoning and machine learning with multiple data features: air pollution risk monitoring and early warning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2555-2572, July.
    19. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    20. Marcot, Bruce G., 2017. "Common quandaries and their practical solutions in Bayesian network modeling," Ecological Modelling, Elsevier, vol. 358(C), pages 1-9.
    21. Yi-Sheng Chao & Marco Scutari & Tai-Shen Chen & Chao-Jung Wu & Madeleine Durand & Antoine Boivin & Hsing-Chien Wu & Wei-Chih Chen, 2018. "A network perspective of engaging patients in specialist and chronic illness care: The 2014 International Health Policy Survey," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-07005-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.