IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i4d10.1007_s11069-024-06955-w.html
   My bibliography  Save this article

Mapping landslide susceptibility with the consideration of spatial heterogeneity and factor optimization

Author

Listed:
  • Chuanfa Chen

    (Shandong University of Science and Technology)

  • Yating Liu

    (Shandong University of Science and Technology)

  • Yanyan Li

    (Shandong University of Science and Technology)

  • Fangjia Guo

    (Shandong University of Science and Technology)

Abstract

Spatial heterogeneity and information redundancy of landslide influencing factors (LIFs) greatly impair the generalizability of landslide susceptibility mapping (LSM) models. To this end, this paper proposes a new LSM method that takes into account spatial heterogeneity and factor optimization. Firstly, a method based on frequency ratio, coupled with buffer-controlled sampling, is developed to extract non-landslides from the non-landslide area. Then, the study site is divided into several homogeneous areas using agglomerative clustering based on LIFs and spatial locations. Next, the LIFs are optimized in each region based on a combination of variance inflation factor, the Boruta algorithm, and geographical detector so as to avoid information redundancy and noise from both statistical and spatial perspectives. Finally, the random forest (RF) model with the optimized LIFs is used for LSM at the regional scale. Taking 686 landslides and 15 LIFs in Yibin city, China as an example, the proposed method was compared with four state-of-the-art models for LSM including regional RF, global RF with factor optimization, global RF using clustering attribute as one of its inputs, global RF without factor optimization, and global RF using a combination of factor optimization and clustering attribute. Results indicate that compared to the four classical models, the proposed method increases the Accuracy, Recall, Precision, F1 score, and the area under the receiver operating characteristic (AUC) curve by 1.6–5.2%, 2.9–12.5%, 0.1–3.5%, 2.9–7.0%, and 1.8–4.7%, respectively. Additionally, the proposed method can produce more accurate and reasonable landslide susceptibility maps, with an increase in the disaster activity intensity index by 2.7–20.8%. Overall, the proposed method presents a viable alternative for the spatial forecast of landslide susceptibility.

Suggested Citation

  • Chuanfa Chen & Yating Liu & Yanyan Li & Fangjia Guo, 2025. "Mapping landslide susceptibility with the consideration of spatial heterogeneity and factor optimization," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4067-4093, March.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06955-w
    DOI: 10.1007/s11069-024-06955-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06955-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06955-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. C. Chalkias & S. Kalogirou & M. Ferentinou, 2014. "Landslide susceptibility, Peloponnese Peninsula in South Greece," Journal of Maps, Taylor & Francis Journals, vol. 10(2), pages 211-222, April.
    3. Yumiao Wang & Xueling Wu & Zhangjian Chen & Fu Ren & Luwei Feng & Qingyun Du, 2019. "Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China," IJERPH, MDPI, vol. 16(3), pages 1-27, January.
    4. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    2. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    3. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    4. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    5. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    6. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    7. Yvan Devaux & Lu Zhang & Andrew I. Lumley & Kanita Karaduzovic-Hadziabdic & Vincent Mooser & Simon Rousseau & Muhammad Shoaib & Venkata Satagopam & Muhamed Adilovic & Prashant Kumar Srivastava & Costa, 2024. "Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    9. Yang Zhao & Denise Gorse, 2024. "Earthquake prediction from seismic indicators using tree-based ensemble learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2283-2309, February.
    10. Ruilin Bai & Yu Yao & Qiaosong Lin & Lize Wu & Zhen Li & Huijuan Wang & Mingze Ma & Di Mu & Lingxiang Hu & Hai Yang & Weihan Li & Shaolong Zhu & Xiaojun Wu & Xianhong Rui & Yan Yu, 2025. "Preferable single-atom catalysts enabled by natural language processing for high energy density Na-S batteries," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Conor Waldock & Bernhard Wegscheider & Dario Josi & Bárbara Borges Calegari & Jakob Brodersen & Luiz Jardim de Queiroz & Ole Seehausen, 2024. "Deconstructing the geography of human impacts on species’ natural distribution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Hyeri Choi & Min Jae Park, 2019. "Evaluating the Efficiency of Governmental Excellence for Social Progress: Focusing on Low- and Lower-Middle-Income Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 111-130, January.
    13. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    14. repec:ers:journl:v:xxiv:y:2021:i:3:p:934-948 is not listed on IDEAS
    15. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    16. Giger, Markus & Mutea, Emily & Kiteme, Boniface & Eckert, Sandra & Anseeuw, Ward & Zaehringer, Julie G., 2020. "Large agricultural investments in Kenya’s Nanyuki Area: Inventory and analysis of business models," Land Use Policy, Elsevier, vol. 99(C).
    17. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    18. Baihan Wang & Alfred Pozarickij & Mohsen Mazidi & Neil Wright & Pang Yao & Saredo Said & Andri Iona & Christiana Kartsonaki & Hannah Fry & Kuang Lin & Yiping Chen & Huaidong Du & Daniel Avery & Dan Sc, 2025. "Comparative studies of 2168 plasma proteins measured by two affinity-based platforms in 4000 Chinese adults," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    20. repec:plo:pone00:0185380 is not listed on IDEAS
    21. Walker, Nathan L. & Styles, David & Coughlan, Paul & Williams, A. Prysor, 2022. "Cross-sector sustainability benchmarking of major utilities in the United Kingdom," Utilities Policy, Elsevier, vol. 78(C).
    22. Cao, Liang & Su, Jianping & Saddler, Jack & Cao, Yankai & Wang, Yixiu & Lee, Gary & Siang, Lim C. & Luo, Yi & Pinchuk, Robert & Li, Jin & Gopaluni, R. Bhushan, 2025. "Machine learning for real-time green carbon dioxide tracking in refinery processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06955-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.