IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i12d10.1007_s11069-025-07356-3.html
   My bibliography  Save this article

Spatial and temporal characteristics of meteorological drought and wetness incidences: a comparative analysis in Ghana, West Africa, and mainland Portugal, Southwestern Europe

Author

Listed:
  • Johnson Ankrah

    (University of Porto
    University of Porto)

Abstract

The frequency and duration of drought and wetness incidences have increased in various land regions as the global climate warms. These incidences threaten various sectors, including agriculture and food security, water resources, and people’s health and livelihoods, needing regular monitoring for improved adaptation. This study analysed the spatial and temporal characteristics of meteorological drought and wetness incidences in Ghana and mainland Portugal between 1981 and 2019. The Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI) were utilised to assess drought and wetness event characteristics parameters based on frequency and duration over 3- and 12-month time scales. The results revealed increased drought events in the northern parts of Ghana compared to the southern parts, while in Portugal, the southern areas exhibited greater drought events than the northern regions based on the SPEI and SPI. Between 1981 and 2019, Ghana experienced more extreme drought events than Portugal, which experienced moderate drought events. In Ghana, severe drought events occurred in 1983, followed by moderate wetness in 2008 and 2019, while in Portugal, severe drought events ensued in 2005 and severe wetness events in 2010. Both countries have experienced increased frequencies and durations of drought and wetness events, coupled with increased spatial variability. Most parts of Ghana, except for the southwestern areas, experienced more frequent and longer durations of drought events. The southern parts of Portugal had more frequent and longer durations of drought events than the northern parts on both the SPEI and SPI, while the wetness events showed the reverse. The drought and wetness event incidences revealed increasing and decreasing spatial trends in both countries. Regular monitoring of drought and wetness events, especially those of a meteorological nature, is important in both countries as their occurrence can lead to other types of drought.

Suggested Citation

  • Johnson Ankrah, 2025. "Spatial and temporal characteristics of meteorological drought and wetness incidences: a comparative analysis in Ghana, West Africa, and mainland Portugal, Southwestern Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(12), pages 14321-14353, July.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:12:d:10.1007_s11069-025-07356-3
    DOI: 10.1007/s11069-025-07356-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07356-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07356-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Amba Shalishe & Anirudh Bhowmick & Kumneger Elias, 2023. "Agricultural drought analysis and its association among land surface temperature, soil moisture and precipitation in Gamo Zone, Southern Ethiopia: a remote sensing approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 57-70, May.
    2. Linyong Wei & Shanhu Jiang & Liliang Ren, 2020. "Evaluation and comparison of three long-term gauge-based precipitation products for drought monitoring over mainland China from 1961 to 2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1371-1387, November.
    3. Gustavo Naumann & Carmelo Cammalleri & Lorenzo Mentaschi & Luc Feyen, 2021. "Increased economic drought impacts in Europe with anthropogenic warming," Nature Climate Change, Nature, vol. 11(6), pages 485-491, June.
    4. João Santos & Maria Portela & Inmaculada Pulido-Calvo, 2011. "Regional Frequency Analysis of Droughts in Portugal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3537-3558, November.
    5. B. Tellman & J. A. Sullivan & C. Kuhn & A. J. Kettner & C. S. Doyle & G. R. Brakenridge & T. A. Erickson & D. A. Slayback, 2021. "Satellite imaging reveals increased proportion of population exposed to floods," Nature, Nature, vol. 596(7870), pages 80-86, August.
    6. Maria João Alcoforado & Luís Pedro Silva & Inês Amorim & Marcelo Fragoso & João Carlos Garcia, 2021. "Historical floods of the Douro River in Porto, Portugal (1727–1799)," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kornelia Przestrzelska & Katarzyna Wartalska & Weronika Rosińska & Jakub Jurasz & Bartosz Kaźmierczak, 2024. "Climate Resilient Cities: A Review of Blue-Green Solutions Worldwide," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5885-5910, December.
    2. Panagiotis Dimas & Georgia-Konstantina Sakki & Panagiotis Kossieris & Ioannis Tsoukalas & Andreas Efstratiadis & Christos Makropoulos & Nikos Mamassis & Katia Pipilli, 2025. "Establishing a Strategic Blueprint for the Design and Evaluation of Flood Control Infrastructure in Extensive Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(6), pages 2673-2700, April.
    3. Xu, Yingying & Lü, Haishen & Yagci, Ali Levent & Zhu, Yonghua & Liu, Di & Wang, Qimeng & Xu, Haiting & Pan, Ying & Su, Jianbin, 2024. "Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain," Agricultural Water Management, Elsevier, vol. 305(C).
    4. Arthur Charpentier & Molly James & Hani Ali, 2021. "Predicting Drought and Subsidence Risks in France," Papers 2107.07668, arXiv.org.
    5. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Cheng He & Yixiang Zhu & Lu Zhou & Jovine Bachwenkizi & Alexandra Schneider & Renjie Chen & Haidong Kan, 2024. "Flood exposure and pregnancy loss in 33 developing countries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Jeffrey D. Michler & Dewan Abdullah Al Rafi & Jonathan Giezendanner & Anna Josephson & Valerien O. Pede & Elizabeth Tellman, 2024. "Impact Evaluations in Data Poor Settings: The Case of Stress-Tolerant Rice Varieties in Bangladesh," Papers 2409.02201, arXiv.org, revised Jul 2025.
    8. Axel Risling & Sara Lindersson & Luigia Brandimarte, 2024. "A comparison of global flood models using Sentinel-1 and a change detection approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11133-11152, September.
    9. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    10. Hanqi Zhang & Xiaoxuan Jiang & Si Peng & Kecen Zhou & Zhinan Xu & Xiangrong Wang, 2025. "Coupled Risk Assessment of Flood Before and During Disaster Based on Machine Learning," Sustainability, MDPI, vol. 17(10), pages 1-30, May.
    11. Alejandro H. Drexler & Ralf Meisenzahl, 2024. "Special issue on climate change and natural disasters," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 91(2), pages 255-261, June.
    12. Duarte, Gabriela T. & Schuster, Richard & Edwards, Marc & Dallaire, Camille O. & Vári, Ágnes & Mitchell, Matthew G.E., 2024. "Flood prevention benefits provided by Canadian natural ecosystems," Ecosystem Services, Elsevier, vol. 70(C).
    13. Chao Yang & Haiying Xu & Qingquan Li & Xuqing Wang & Bohui Tang & Junyi Chen & Wei Tu & Yinghui Zhang & Tiezhu Shi & Min Chen & Wei Ma & Huizeng Liu & Jonathan M. Chase, 2025. "Global loss of mountain vegetated landscapes and its impact on biodiversity conservation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Eka Djunarsjah & Dwi Wisayantono & Miga Magenika Julian & Andika Permadi Putra & Sena Andhika Samudra & Saga Maulana & Nafandra Syabana Lubis & Angdrico & Anas Ardian Pradana & Agung Bayu Aji & Briant, 2025. "Identification of flood causes and flood modeling for the reconstruction of affected land in Bireuen District, Aceh Province, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(10), pages 11553-11592, June.
    15. Justin S. Rogers & Marco P. Maneta & Stephan R. Sain & Luke E. Madaus & Joshua P. Hacker, 2025. "The role of climate and population change in global flood exposure and vulnerability," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    17. Yongshuai Liang & Weihong Liao & Hao Wang, 2025. "Efficient Urban Flooding Management: A Multi-Physical-Process-Oriented Flood Modelling and Analysis Method," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
    18. Yongkang Li & Qing He & Yongqiang Liu & Amina Maituerdi & Yang Yan & Jiao Tan, 2024. "Development and Evaluation of Machine Learning Models for Air-to-Land Temperature Conversion Using the Newly Established Kunlun Mountain Gradient Observation System," Land, MDPI, vol. 13(11), pages 1-26, November.
    19. Changchun Peng & Zhijun Xie & Xing Jin, 2024. "Using Ensemble Learning for Remote Sensing Inversion of Water Quality Parameters in Poyang Lake," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    20. Hong Ngoc Nguyen & Hiroatsu Fukuda & Minh Nguyet Nguyen, 2024. "Assessment of the Susceptibility of Urban Flooding Using GIS with an Analytical Hierarchy Process in Hanoi, Vietnam," Sustainability, MDPI, vol. 16(10), pages 1-24, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:12:d:10.1007_s11069-025-07356-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.