IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i5d10.1007_s11069-023-06395-y.html
   My bibliography  Save this article

Linking the future likelihood of large fires to occur on mountain slopes with fuel connectivity and topography

Author

Listed:
  • Marco Conedera

    (Swiss Federal Research Institute WSL)

  • Jeremy Feusi

    (Swiss Federal Research Institute WSL)

  • Gianni Boris Pezzatti

    (Swiss Federal Research Institute WSL)

  • Patrik Krebs

    (Swiss Federal Research Institute WSL)

Abstract

In the long run, ongoing climate change is expected to alter fuel production as well as the frequency and severity of fire weather, which may result in an unprecedented frequency of extreme fire events. In this paper we propose a simplified and spatially explicit method to assess the probability of experiencing large fires, based on topography (slope length) as well as extent and aggregation of the forested area (fuel connectivity). We considered 21 homogeneous pyroregions covering entire Switzerland as a study case and computed the length of the upslope paths within the forested areas, simulating ignition points on a systematic 100 × 100 m square grid. We then compared the obtained path lengths for each pyroregion with selected historical large forest fire statistics (e.g., mean area of the largest 5% of fires, maximum burnt area per fire) collected over the course of the last 30 years. This resulted in rather high R2 values, ranging from 0.558 to 0.651. The proposed approach was shown to allow for an easy identification and geo-localization of potential hotspots in terms of the likelihood for large fires to occur in mountainous regions, which is a prerequisite for a targeted planning of fire management measures aimed at preventing large fires and related post-fire gravitative natural hazards.

Suggested Citation

  • Marco Conedera & Jeremy Feusi & Gianni Boris Pezzatti & Patrik Krebs, 2024. "Linking the future likelihood of large fires to occur on mountain slopes with fuel connectivity and topography," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4657-4673, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-023-06395-y
    DOI: 10.1007/s11069-023-06395-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06395-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06395-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pezzatti, Gianni B. & Zumbrunnen, Thomas & Bürgi, Matthias & Ambrosetti, Paolo & Conedera, Marco, 2013. "Fire regime shifts as a consequence of fire policy and socio-economic development: An analysis based on the change point approach," Forest Policy and Economics, Elsevier, vol. 29(C), pages 7-18.
    2. Douglas I. Kelley & Ioannis Bistinas & Rhys Whitley & Chantelle Burton & Toby R. Marthews & Ning Dong, 2019. "How contemporary bioclimatic and human controls change global fire regimes," Nature Climate Change, Nature, vol. 9(9), pages 690-696, September.
    3. Abbas Mofidi & Iman Soltanzadeh & Yadollah Yousefi & Azar Zarrin & Mohsen Soltani & Jafar Masoompour Samakosh & Ghasem Azizi & Samuel Miller, 2015. "Modeling the exceptional south Foehn event (Garmij) over the Alborz Mountains during the extreme forest fire of December 2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2489-2518, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ancog, Rico C. & Florece, Leonardo M. & Nicopior, Ozzy Boy, 2016. "Fire occurrence and fire mitigation strategies in a grassland reforestation area in the Philippines," Forest Policy and Economics, Elsevier, vol. 64(C), pages 35-45.
    2. Manuel Bertomeu & Javier Pineda & Fernando Pulido, 2022. "Managing Wildfire Risk in Mosaic Landscapes: A Case Study of the Upper Gata River Catchment in Sierra de Gata, Spain," Land, MDPI, vol. 11(4), pages 1-26, March.
    3. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    4. Ingrid Vigna & Angelo Besana & Elena Comino & Alessandro Pezzoli, 2021. "Application of the Socio-Ecological System Framework to Forest Fire Risk Management: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    5. Marcos Rodrigues & Adrián Jiménez & Juan de la Riva, 2016. "Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2049-2070, December.
    6. Hamish Clarke & Rachael H. Nolan & Victor Resco Dios & Ross Bradstock & Anne Griebel & Shiva Khanal & Matthias M. Boer, 2022. "Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Morello, Thiago & Anderson, Liana & Silva, Sonaira, 2022. "Innovative fire policy in the Amazon: A statistical Hicks-Kaldor analysis," Ecological Economics, Elsevier, vol. 191(C).
    8. Mohammad Reza Jangi & Azar Zarrin & Abbas Mofidi & Abbasali Dadashi-Roudbari, 2024. "Intensifying heatwave trends in Iran based on observational data using excess heat factor (EHF)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 2073-2090, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-023-06395-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.