IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i4d10.1007_s11069-023-06326-x.html
   My bibliography  Save this article

An early indicator index of tornadic storms for Euro-Mediterranean region

Author

Listed:
  • Omer Kutay Mihliardic

    (Leibniz University Hannover)

  • Sevinc Asilhan Sirdas

    (Istanbul Technical University)

  • Serkan Kaya

    (Karlsruhe Institute of Technology)

Abstract

Tornadoes are the most violent and destructive of all the severe weather phenomena that localized convective storms produce. There is a requirement in operational meteorology increasing nowadays that an indicator index which allows to reduce the uncertainty of severe convective storms and tornadoes in the scope of climate change adaptation strategies. The main intention is not to replace or substitute mesoscale modeling approaches, or composite indexes, but to warn operationally to draw attention to the Eastern Mediterranean and Türkiye in particular a few days in advance. The development of some indicators using atmospheric variables can undertake a crucial role by enabling such numerical models to be run only at certain time intervals, thus enduring lower computational costs. In this study, Eastern Mediterranean oscillation index (EMEDOi) has been developed in order to be able to detect the presence of ULLs (upper-level low) and frontogenesis approach is employed for selected tornadic storm events in Türkiye. EMEDOi has 7 different its variations (members) which these members have been developed to detect differences depending on the entry directions of cyclones and storms influencing Türkiye from the west of the country. In line with the GDAS data analysis, values of geopotential height are derived for the requirement of EMEDOi in a limited area. A few of the results from the study are as in the following: 86% of the trained tornado events revealed that the EMEDO-Oper index was in negative phase at the time a tornado was reported, regardless of whether the events featured a supercell mesoscale convective storm or a frontal movement. The hourly period until the local minimum is obtained can be described and characterized as the process by which the EMEDO-Oper index value decreases continuously. The time required to reach the local minimum varies based on the tornado occurrence. Based on the tornadic storm scenario in the test cluster in 2022 and the train cluster, this timeframe is predicted to be roughly 33.2 h on average. In western Türkiye, there is a 79% chance of a tornado occurring between six and forty-two hours after the EMEDO-Oper index reaches its local minimum. In particular, the projected chance for this period is 63% between 12 and 30 h after the local minimum is obtained. Besides, the majority of the tornado incidents with EMEDO-Oper values below − 0.75 were evaluated. After an EMEDO-Oper index value falls below that threshold, it is likely to forecast the risk period of a tornado in Türkiye with a probability of 79% and the local minimum point must be identified.

Suggested Citation

  • Omer Kutay Mihliardic & Sevinc Asilhan Sirdas & Serkan Kaya, 2024. "An early indicator index of tornadic storms for Euro-Mediterranean region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3363-3400, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06326-x
    DOI: 10.1007/s11069-023-06326-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06326-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06326-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06326-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.