IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i3d10.1007_s11069-023-06318-x.html
   My bibliography  Save this article

Life cycle of gullies: a susceptibility assessment in the Southern Main Ethiopian Rift

Author

Listed:
  • Liuelsegad Belayneh

    (Arba Minch University
    Vrije Universiteit Brussel)

  • Matthieu Kervyn

    (Vrije Universiteit Brussel)

  • Guchie Gulie

    (Arba Minch University)

  • Jean Poesen

    (KU Leuven
    Maria Curie-Sklodowska University)

  • Cornelis Stal

    (HOGENT)

  • Alemayehu Kasaye

    (Arba Minch University)

  • Tizita Endale

    (Arba Minch University)

  • John Sekajugo

    (Vrije Universiteit Brussel
    Mountains of the Mon University
    Mbarara University of Science and Technology)

  • Olivier Dewitte

    (Royal Museum for Central Africa)

Abstract

Gullies experience varying states of activity during their life cycle. For example, their highest growth rates are commonly observed in the period that follows their initiation, whereas they are less active when reaching stability. Understanding the environmental conditions under which gullies initiate, expand, and stabilize is therefore vital to mitigate their impacts. Data-driven susceptibility assessments are key approaches to understanding these conditions at the catchment scale. However, such assessments commonly focus, at best, only on one part of the problem (e.g., on the gully heads) and do not consider gully erosion processes. So far, no study has attempted to explicitly model the life cycle of gullies at regional scale using statistical approach. Here, we help bridging this research gap through modeling separately the location where new gullies initiate and where they stabilize using both gully initiation points and gully heads. More specifically, we study over 4400 active and inactive gullies in the Southern Main Ethiopian Rift. Using logistic regression models, we assess the susceptibility to gully initiation points derived from slope-drainage area (S–A) thresholds. This is then compared with the susceptibility of active or inactive gully heads at the level of four catchments considered together and separately. Highly susceptible areas for gully initiation are mainly located in rejuvenated landscapes downslope of rifting-associated knickpoints, where steep hillslopes are more recent than those of the surrounding relict landscapes and where landslides are present. Planform concave slopes with a higher surface runoff concentration favor initiation of gullies. In contrast, gullies stabilize in planform convex slopes with a more diffusive characteristic. The resulting susceptibility models can contribute to the decision-making process on the optimized locations of soil and water conservation measures during several stages of the life cycle of gullies.

Suggested Citation

  • Liuelsegad Belayneh & Matthieu Kervyn & Guchie Gulie & Jean Poesen & Cornelis Stal & Alemayehu Kasaye & Tizita Endale & John Sekajugo & Olivier Dewitte, 2024. "Life cycle of gullies: a susceptibility assessment in the Southern Main Ethiopian Rift," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 3067-3104, February.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06318-x
    DOI: 10.1007/s11069-023-06318-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06318-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06318-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maryam Zare & Majid Soufi & Masoud Nejabat & Hamid Reza Pourghasemi, 2022. "The topographic threshold of gully erosion and contributing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2013-2035, July.
    2. Omid Rahmati & Ali Haghizadeh & Hamid Reza Pourghasemi & Farhad Noormohamadi, 2016. "Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1231-1258, June.
    3. Hamed Ahmadpour & Ommolbanin Bazrafshan & Elham Rafiei-Sardooi & Hossein Zamani & Thomas Panagopoulos, 2021. "Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    4. Massimo Conforti & Pietro Aucelli & Gaetano Robustelli & Fabio Scarciglia, 2011. "Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 881-898, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kennedy Were & Syphyline Kebeney & Harrison Churu & James Mumo Mutio & Ruth Njoroge & Denis Mugaa & Boniface Alkamoi & Wilson Ng’etich & Bal Ram Singh, 2023. "Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya," Land, MDPI, vol. 12(4), pages 1-19, April.
    2. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    3. Ali Azedou & Said Lahssini & Abdellatif Khattabi & Modeste Meliho & Nabil Rifai, 2021. "A Methodological Comparison of Three Models for Gully Erosion Susceptibility Mapping in the Rural Municipality of El Faid (Morocco)," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    4. Narges Javidan & Ataollah Kavian & Christian Conoscenti & Zeinab Jafarian & Mahin Kalehhouei & Raana Javidan, 2024. "Development of risk maps for flood, landslide, and soil erosion using machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11987-12010, October.
    5. Hamid Mohebzadeh & Asim Biswas & Ben DeVries & Ramesh Rudra & Prasad Daggupati, 2024. "Transferability of predictive models to map susceptibility of ephemeral gullies at large scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4527-4561, March.
    6. Jinzhao Li & Meilan Qi, 2015. "Local scour induced by upstream riverbed level lowering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1811-1827, July.
    7. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    8. Nur Syabeera Begum Nasir Ahmad & Firuza Begham Mustafa & Safiah Yusmah Muhammad Yusoff, 2024. "Spatial prediction of soil erosion risk using knowledge-driven method in Malaysia’s Steepland Agriculture Forested Valley," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15333-15359, June.
    9. Marta Jurchescu & Florina Grecu, 2015. "Modelling the occurrence of gullies at two spatial scales in the Olteţ Drainage Basin (Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 255-289, November.
    10. Nerea Martín-Raya & Jaime Díaz-Pacheco & Abel López-Díez & Pedro Dorta Antequera & Amílcar Cabrera, 2023. "A lava flow simulation experience oriented to disaster risk reduction, early warning systems and response during the 2021 volcanic eruption in Cumbre Vieja, La Palma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3331-3351, July.
    11. Rabin Chakrabortty & Subodh Chandra Pal & Mehebub Sahana & Ayan Mondal & Jie Dou & Binh Thai Pham & Ali P. Yunus, 2020. "Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1259-1294, November.
    12. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    13. Swades Pal & Sandipta Debanshi, 2018. "Influences of soil erosion susceptibility toward overloading vulnerability of the gully head bundhs in Mayurakshi River basin of eastern Chottanagpur Plateau," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1739-1775, August.
    14. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    15. Hamed Ahmadpour & Ommolbanin Bazrafshan & Elham Rafiei-Sardooi & Hossein Zamani & Thomas Panagopoulos, 2021. "Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    16. Omid Rahmati & Ali Haghizadeh & Stefanos Stefanidis, 2016. "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1131-1150, February.
    17. Ionut Cristi Nicu & Alin Mihu-Pintilie & James Williamson, 2019. "GIS-Based and Statistical Approaches in Archaeological Predictive Modelling (NE Romania)," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    18. Silvija Šiljeg & Rina Milošević & Marica Mamut, 2024. "Pluvial Flood Susceptibility in the Local Community of the City of Gospić (Croatia)," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    19. Hang Ha & Chinh Luu & Quynh Duy Bui & Duy-Hoa Pham & Tung Hoang & Viet-Phuong Nguyen & Minh Tuan Vu & Binh Thai Pham, 2021. "Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1247-1270, October.
    20. Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06318-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.