IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i8d10.1007_s11069-025-07136-z.html
   My bibliography  Save this article

Machine learning techniques on spatio-temporal data for landslide susceptibility assessment at Dieng Mountainous Region, Banjarnegara district, Central Java, Indonesia

Author

Listed:
  • Yusuf Susena

    (Universitas Gadjah Mada)

  • Danang Sri Hadmoko

    (Universitas Gadjah Mada)

  • Sandy Budi Wibowo

    (Universitas Gadjah Mada)

Abstract

This research was conducted in the mountainous area of Dieng, Central Java. The study area is among the highest-ranked landslide-prone areas on Java due to steep slopes and intensively weathered Tertiary volcanic rocks, which dominate the area. The annual rainfall in the Dieng region is very high, over 3000 mm/year, which represents a primary trigger for landslides. This present contribution aims at assessing landslide susceptibility through a combination of multi-temporal remote-sensing and machine learning such as Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Networks (ANN). The multi-temporal remote sensing approach was utilized to inventory landslide occurrences over the period from 2014 to 2024 using PlanetScope and Google Earth Platform. Those images and platform enabled us to map landslide occurrences comprehensively and accurately, in a relatively efficient manner, thereby reducing the extensive and costly fieldwork. Machine learning was applied as a solution to the accuracy issues inherent in semi-quantitative and probabilistic statistical methods for landslide prediction. The assessment of landslide susceptibility revealed that all three models achieved very high accuracy and could be applied to both the study area and other regions. However, accuracy assessment with various indicators showed that ANN produced the best results, followed by RF and SVM. Thus, the findings of this study can be adopted by national or local authorities in disaster mitigation as part of disaster risk reduction instruments. This is highly relevant to support the Sustainable Development Goals (SDGs) number 11: Sustainable Cities and Communities, which aims to make cities and human settlements inclusive, safe, resilient, and sustainable, including disaster risk reduction.

Suggested Citation

  • Yusuf Susena & Danang Sri Hadmoko & Sandy Budi Wibowo, 2025. "Machine learning techniques on spatio-temporal data for landslide susceptibility assessment at Dieng Mountainous Region, Banjarnegara district, Central Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(8), pages 9925-9962, May.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07136-z
    DOI: 10.1007/s11069-025-07136-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07136-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07136-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Danang Hadmoko & Franck Lavigne & Junun Sartohadi & Pramono Hadi & Winaryo, 2010. "Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 623-642, September.
    2. Omid Rahmati & Ali Haghizadeh & Hamid Reza Pourghasemi & Farhad Noormohamadi, 2016. "Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1231-1258, June.
    3. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    4. Darya Golovko & Sigrid Roessner & Robert Behling & Birgit Kleinschmit, 2017. "Automated derivation and spatio-temporal analysis of landslide properties in southern Kyrgyzstan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1461-1488, February.
    5. Guru Balamurugan & Veerappan Ramesh & Mangminlen Touthang, 2016. "Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 465-488, October.
    6. Abhik Saha & Vasanta Govind Kumar Villuri & Ashutosh Bhardwaj, 2022. "Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India," Land, MDPI, vol. 11(10), pages 1-27, October.
    7. Dieu Tien Bui & Biswajeet Pradhan & Owe Lofman & Inge Revhaug, 2012. "Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danang Sri Hadmoko & Franck Lavigne & Guruh Samodra, 2017. "Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 437-468, May.
    2. Uzodigwe Emmanuel Nnanwuba & Shengwu Qin & Oluwafemi Adewole Adeyeye & Ndichie Chinemelu Cosmas & Jingyu Yao & Shuangshuang Qiao & Sun Jingbo & Ekene Mathew Egwuonwu, 2022. "Prediction of Spatial Likelihood of Shallow Landslide Using GIS-Based Machine Learning in Awgu, Southeast/Nigeria," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    3. Rachida Senouci & Nasr-Eddine Taibi & Ana Cláudia Teodoro & Lia Duarte & Hamidi Mansour & Rabia Yahia Meddah, 2021. "GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District, West of Algeria," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    4. Xiaoxiao Ju & Junjie Li & Chongxiang Sun & Bo Li, 2024. "Landslide Susceptibility Assessment Using a CNN–BiLSTM-AM Model," Sustainability, MDPI, vol. 16(21), pages 1-24, October.
    5. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    6. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    7. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    8. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    9. Liuelsegad Belayneh & Matthieu Kervyn & Guchie Gulie & Jean Poesen & Cornelis Stal & Alemayehu Kasaye & Tizita Endale & John Sekajugo & Olivier Dewitte, 2024. "Life cycle of gullies: a susceptibility assessment in the Southern Main Ethiopian Rift," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 3067-3104, February.
    10. Ali Azedou & Said Lahssini & Abdellatif Khattabi & Modeste Meliho & Nabil Rifai, 2021. "A Methodological Comparison of Three Models for Gully Erosion Susceptibility Mapping in the Rural Municipality of El Faid (Morocco)," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    11. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    12. K. Sajinkumar & S. Anbazhagan, 2015. "Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 953-973, January.
    13. Danang Hadmoko & Franck Lavigne & Junun Sartohadi & Pramono Hadi & Winaryo, 2010. "Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 623-642, September.
    14. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    15. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    16. Paola Gattinoni, 2009. "Parametrical landslide modeling for the hydrogeological susceptibility assessment: from the Crati Valley to the Cavallerizzo landslide (Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 161-178, July.
    17. Kennedy Were & Syphyline Kebeney & Harrison Churu & James Mumo Mutio & Ruth Njoroge & Denis Mugaa & Boniface Alkamoi & Wilson Ng’etich & Bal Ram Singh, 2023. "Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya," Land, MDPI, vol. 12(4), pages 1-19, April.
    18. Gao Hua-xi & Yin Kun-long, 2014. "Study on spatial prediction and time forecast of landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1735-1748, February.
    19. Sheela Bhuvanendran Bhagya & Anita Saji Sumi & Sankaran Balaji & Jean Homian Danumah & Romulus Costache & Ambujendran Rajaneesh & Ajayakumar Gokul & Chandini Padmanabhapanicker Chandrasenan & Renata P, 2023. "Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps," Land, MDPI, vol. 12(2), pages 1-29, February.
    20. Ginés Suárez & María José Domínguez-Cuesta, 2021. "Improving landslide susceptibility predictive power through colluvium mapping in Tegucigalpa, Honduras," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 47-66, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07136-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.