IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i1d10.1007_s11069-023-06213-5.html
   My bibliography  Save this article

Submarine slope failures due to gas hydrate dissociation and degassing along the edge of gas hydrate stability zone in the Krishna Godavari basin

Author

Listed:
  • Palle Jyothsna

    (CSIR-National Geophysical Research Institute, Controlled source seismics and Gas hydrates
    Academy of Scientific and Innovative Research (AcSIR))

  • Nittala Satyavani

    (CSIR-National Geophysical Research Institute, Controlled source seismics and Gas hydrates
    Academy of Scientific and Innovative Research (AcSIR))

Abstract

Gas hydrate dissociation typically occurs due to the changes in the gas hydrate stability conditions and can act as a trigger for marine slides. The 3D seismic data from the Krishna Godavari basin is examined to understand the role of the dissociation mechanism of gas hydrates on slumping/sliding. Interpretation of the seismic data in the study area reveals the shoaling of the bottom simulating reflector (BSR) followed by truncation, creating slope failure/slumps. The role of pressure and temperature in altering the hydrate stability and triggering slides is studied, and it is observed that the temperature is the main parameter that controls the gas hydrate stability. The hydrate stability zone during the glacial time (sea-bottom temperature 4 °C) and the present day (sea-bottom temperature 6.5 °C) is computed with varying geothermal gradients (GTG) of 45 ± 3 °C/km. The results show that the base of the hydrate stability zone (BHSZ) has shifted by 80 m post-glacial at a water depth of ~ 1000 m. The computed depth of hydrate dissociation and the dissociation temperature was also studied for all the BSR instances in the study area, and we find a close correlation with the depth of dissociation inferred from the interpretation of seismic data. Two slumping features were observed in the seismic data of varying sizes: The smaller one is attributable to the over-pressurized zone below the BSR and the larger one (~ 21 km2) seems to have formed as a result of gas hydrate dissociation in the region where the BSR intercepts the seafloor.

Suggested Citation

  • Palle Jyothsna & Nittala Satyavani, 2024. "Submarine slope failures due to gas hydrate dissociation and degassing along the edge of gas hydrate stability zone in the Krishna Godavari basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 321-338, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06213-5
    DOI: 10.1007/s11069-023-06213-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06213-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06213-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jessica E. Tierney & Jiang Zhu & Jonathan King & Steven B. Malevich & Gregory J. Hakim & Christopher J. Poulsen, 2020. "Glacial cooling and climate sensitivity revisited," Nature, Nature, vol. 584(7822), pages 569-573, August.
    2. Benjamin J. Phrampus & Matthew J. Hornbach, 2012. "Recent changes to the Gulf Stream causing widespread gas hydrate destabilization," Nature, Nature, vol. 490(7421), pages 527-530, October.
    3. Judith Elger & Christian Berndt & Lars Rüpke & Sebastian Krastel & Felix Gross & Wolfram H. Geissler, 2018. "Submarine slope failures due to pipe structure formation," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    4. Matthew J. Hornbach & Demian M. Saffer & W. Steven Holbrook, 2004. "Critically pressured free-gas reservoirs below gas-hydrate provinces," Nature, Nature, vol. 427(6970), pages 142-144, January.
    5. Maria De La Fuente & Jean Vaunat & Héctor Marín-Moreno, 2021. "Modelling Methane Hydrate Saturation in Pores: Capillary Inhibition Effects," Energies, MDPI, vol. 14(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa Burwicz & Lars Rüpke, 2019. "Thermal State of the Blake Ridge Gas Hydrate Stability Zone (GHSZ)—Insights on Gas Hydrate Dynamics from a New Multi-Phase Numerical Model," Energies, MDPI, vol. 12(17), pages 1-24, September.
    2. Megan Ceronsky & David Anthoff & Cameron Hepburn & Richard S.J. Tol, 2005. "Checking The Price Tag On Catastrophe: The Social Cost Of Carbon Under Non-Linear Climate Response," Working Papers FNU-87, Research unit Sustainability and Global Change, Hamburg University, revised Aug 2005.
    3. Xie, Yan & Feng, Jing-Chun & Chen, Xingyu & Wang, Junwen & Xu, Longhang & Zhou, Zhenwu & Wang, Bin & Wang, Yi & Zhang, Si & Yang, Zhifeng, 2024. "CH4 hydrate dissociation and CH4 leakage characteristics: Insights from laboratory investigation based on stratified environment reconstruction of natural gas hydrate reservoir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    4. Fuzhi Lu & Huayu Lu & Yao Gu & Pengyu Lin & Zhengyao Lu & Qiong Zhang & Hongyan Zhang & Fan Yang & Xiaoyi Dong & Shuangwen Yi & Deliang Chen & Francesco S. R. Pausata & Maya Ben-Yami & Jennifer V. Mec, 2025. "Tipping point-induced abrupt shifts in East Asian hydroclimate since the Last Glacial Maximum," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    5. Bradley, Tom & Maga, Daniel & Antón, Sara, 2015. "Unified approach to Life Cycle Assessment between three unique algae biofuel facilities," Applied Energy, Elsevier, vol. 154(C), pages 1052-1061.
    6. A. Morley & E. Vega & M. Raitzsch & J. Bijma & U. Ninnemann & G. L. Foster & T. B. Chalk & J. Meilland & R. R. Cave & J. V. Büscher & M. Kucera, 2024. "A solution for constraining past marine Polar Amplification," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Xuemin Wu & Qianyong Liang & Yun Ma & Yaohong Shi & Zhen Xia & Lihua Liu & Matthias Haeckel, 2018. "Submarine Landslides and their Distribution in the Gas Hydrate Area on the North Slope of the South China Sea," Energies, MDPI, vol. 11(12), pages 1-18, December.
    8. Anne Dallmeyer & Thomas Kleinen & Martin Claussen & Nils Weitzel & Xianyong Cao & Ulrike Herzschuh, 2022. "The deglacial forest conundrum," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. E. W. Patterson & V. Skiba & A. Wolf & M. L. Griffiths & D. McGee & T. N. Bùi & M. X. Trần & T. H. Đinh & Q. Đỗ-Trọng & G. R. Goldsmith & V. Ersek & K. R. Johnson, 2024. "Local hydroclimate alters interpretation of speleothem δ18O records," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Yi Zhong & Zhiguo Li & Xuefa Shi & Terry Isson & Jimin Yu & Sev Kender & Zhou Liang & George E. A. Swann & Alex Pullen & Michael E. Weber & Jinlong Du & Juan C. Larrasoaña & Jingyu Zhang & Yafang Song, 2025. "Enhanced phosphorus weathering contributed to Late Miocene cooling," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Hariharan Ramachandran & Andreia Plaza-Faverola & Hugh Daigle, 2022. "Impact of Gas Saturation and Gas Column Height at the Base of the Gas Hydrate Stability Zone on Fracturing and Seepage at Vestnesa Ridge, West-Svalbard Margin," Energies, MDPI, vol. 15(9), pages 1-25, April.
    12. Bohan Zhou & Marcelo Sanchez & Luciano Oldecop & J. Carlos Santamarina, 2022. "A Geomechanical Model for Gas Hydrate Bearing Sediments Incorporating High Dilatancy, Temperature, and Rate Effects," Energies, MDPI, vol. 15(12), pages 1-23, June.
    13. Jérémy Courtin & Kathleen R. Stoof-Leichsenring & Simeon Lisovski & Ying Liu & Inger Greve Alsos & Boris K. Biskaborn & Bernhard Diekmann & Martin Melles & Bernd Wagner & Luidmila Pestryakova & James , 2025. "Potential plant extinctions with the loss of the Pleistocene mammoth steppe," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    14. M. H. Løland & Y. Krüger & A. Fernandez & F. Buckingham & S. A. Carolin & H. Sodemann & J. F. Adkins & K. M. Cobb & A. N. Meckler, 2022. "Evolution of tropical land temperature across the last glacial termination," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Yapeng Zhao & Liang Kong & Lele Liu & Jiaqi Liu, 2022. "Influence of hydrate exploitation on stability of submarine slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 719-743, August.
    16. Jonathan King & Kevin J. Anchukaitis & Kathryn Allen & Tessa Vance & Amy Hessl, 2023. "Trends and variability in the Southern Annular Mode over the Common Era," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06213-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.