IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i3d10.1007_s11069-018-3482-x.html
   My bibliography  Save this article

Flood routing by Kidney algorithm and Muskingum model

Author

Listed:
  • Nazanin Node Farahani

    (Semnan University)

  • Saeed Farzin

    (Semnan University)

  • Hojat Karami

    (Semnan University)

Abstract

Flood is one of the natural hazards that its prediction and control is of great importance. One of the most important models in the field of flood routing is the Muskingum model. In this study, Muskingum four-parameter model is used for flood routing. The existence of unknown parameters causes the Kidney algorithm to be used as a new evolutionary algorithm based on reabsorption and filter operators for flood routing. The operators make the Kidney algorithm accelerate the convergence process and improve the quality of responses. Three floods were selected based on Kidney algorithm. The results indicated that the amount of sum squared deviation reduced by 84, 90, 35 and 86% for the Wilson flood algorithm compared to the Honey bee mating optimization, pattern search, particle swarm optimization (PSO) and harmony search (HS) methods for flood routing based on observational and simulated discharge. Also, the results indicated that the Kidney algorithm is more accurate based on the Muskingum four-parameter model than the Muskingum three-parameter model and the Muskingum two-parameter model. The sum absolute deviation value for the HS, genetic algorithm and PSO methods is 94, 88 and 82% higher than Kidney algorithm for Karahan flood. In addition, the predicted peak discharge for the Karahan flood and the predicted time for peak discharge were more accurate than other evolutionary algorithms. Also, the results of the Kidney algorithm for the Viessman and Lewis floods indicated that the Kidney algorithm well reduces the error indicators. Therefore, the Kidney algorithm as a suitable algorithm based on Muskingum four-parameter model had higher accuracy.

Suggested Citation

  • Nazanin Node Farahani & Saeed Farzin & Hojat Karami, 2023. "Flood routing by Kidney algorithm and Muskingum model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 2251-2269, December.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-018-3482-x
    DOI: 10.1007/s11069-018-3482-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3482-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3482-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-018-3482-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.