IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i2d10.1007_s11069-023-06059-x.html
   My bibliography  Save this article

Natural hazards fatalities in Brazil, 1979–2019

Author

Listed:
  • Gabriela Couto

    (National Institute for Space Research (INPE))

  • Alber Sanchez

    (National Institute for Space Research (INPE))

  • Regina Célia Alvalá

    (National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN))

  • Carlos Afonso Nobre

    (National Institute for Space Research (INPE)
    University of São Paulo)

Abstract

The impact of natural hazards on nations and societies is a global challenge and concern. Worldwide, studies have been conducted within and between countries, to examine the spatial distribution and temporal evolution of fatalities and their impact on societies. In Brazil, no studies have comprehensively identified the fatalities associated with all natural hazards and their specificities by decade, region, sex, age, and other victim characteristics. This study carries out an in-depth analysis of the Brazilian Mortality Data of the Brazilian Ministry of Health, from 1979 to 2019, identifying the natural hazards that kill the most people in Brazil and their particularities. Lightning is the deadliest natural hazard in Brazil during this period, with a gradual decrease in the number of fatalities. The number of hydro-meteorological fatalities increases from 2000 onwards, with the highest number of fatalities occurring between 2010 and 2019. Although Brazil is a tropical country affected by severe droughts, extreme heat has the lowest number of fatalities compared to other natural hazards. The period from December to March has a higher number of fatalities, and the southeast is the most populous region where most people die. The number of male victims is twice as high as the number of female victims, across all ages groups, and unmarried victims are the most likely to die. It is therefore essential to recognize and disseminate the knowledge about the impact of different natural hazards on communities and societies, namely on people and their livelihoods, in order to assess the challenges and identify opportunities for reducing the effects of natural hazards in Brazil.

Suggested Citation

  • Gabriela Couto & Alber Sanchez & Regina Célia Alvalá & Carlos Afonso Nobre, 2023. "Natural hazards fatalities in Brazil, 1979–2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1487-1514, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06059-x
    DOI: 10.1007/s11069-023-06059-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06059-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06059-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nathan S. Debortoli & Pedro Ivo M. Camarinha & José A. Marengo & Regina R. Rodrigues, 2017. "An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 557-582, March.
    2. Emilio Zagheni & Raya Muttarak & Erich Striessnig, 2015. "Differential mortality patterns from hydro-meteorological disasters: Evidence from cause-of-death data by age and sex," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 47-70.
    3. S. Pereira & J. L. Zêzere & I. Quaresma & P. P. Santos & M. Santos, 2016. "Mortality Patterns of Hydro‐Geomorphologic Disasters," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1188-1210, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Júlia Alves Menezes & Ulisses Confalonieri & Ana Paula Madureira & Isabela de Brito Duval & Rhavena Barbosa dos Santos & Carina Margonari, 2018. "Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-30, February.
    2. Wanderson Luiz-Silva & Antonio Carlos Oscar-Júnior, 2022. "Climate extremes related with rainfall in the State of Rio de Janeiro, Brazil: a review of climatological characteristics and recorded trends," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 713-732, October.
    3. Vijendra Kumar & Naresh Kedam & Kul Vaibhav Sharma & Khaled Mohamed Khedher & Ayed Eid Alluqmani, 2023. "A Comparison of Machine Learning Models for Predicting Rainfall in Urban Metropolitan Cities," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    4. Xiaoyun Sun & Guotao Zhang & Jiao Wang & Chaoyue Li & Shengnan Wu & Yao Li, 2022. "Spatiotemporal variation of flash floods in the Hengduan Mountains region affected by rainfall properties and land use," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 465-488, March.
    5. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    6. Yang Wang & Hao Yin & Zhiruo Liu & Xinyu Wang, 2022. "A Systematic Review of the Scientific Literature on Pollutant Removal from Stormwater Runoff from Vacant Urban Lands," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    7. Thiago Christiano Silva & Benjamin Miranda Tabak, 2019. "Growth and Activity Diversification: the impact of financing non-traditional local activities," Working Papers Series 498, Central Bank of Brazil, Research Department.
    8. Xue Yang & Shili Guo & Xin Deng & Wei Wang & Dingde Xu, 2021. "Study on Livelihood Vulnerability and Adaptation Strategies of Farmers in Areas Threatened by Different Disaster Types under Climate Change," Agriculture, MDPI, vol. 11(11), pages 1-21, November.
    9. Rex Aurelius C. Robielos & Chiuhsiang Joe Lin & Delia B. Senoro & Froilan P. Ney, 2020. "Development of Vulnerability Assessment Framework for Disaster Risk Reduction at Three Levels of Geopolitical Units in the Philippines," Sustainability, MDPI, vol. 12(21), pages 1-27, October.
    10. Roman Hoffmann & Daniela Blecha, 2020. "Education and Disaster Vulnerability in Southeast Asia: Evidence and Policy Implications," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    11. Marina Batalini de Macedo & Marcus Nóbrega Gomes Júnior & Vivian Jochelavicius & Thalita Raquel Pereira de Oliveira & Eduardo Mario Mendiondo, 2022. "Modular Design of Bioretention Systems for Sustainable Stormwater Management under Drivers of Urbanization and Climate Change," Sustainability, MDPI, vol. 14(11), pages 1-27, June.
    12. Jean Nsabimana & Sabine Henry & Aloys Ndayisenga & Désiré Kubwimana & Olivier Dewitte & François Kervyn & Caroline Michellier, 2023. "Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City," Land, MDPI, vol. 12(10), pages 1-26, October.
    13. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    14. Júlia Alves Menezes & Ana Paula Madureira & Rhavena Barbosa dos Santos & Isabela de Brito Duval & Pedro Regoto & Carina Margonari & Martha Macêdo de Lima Barata & Ulisses Confalonieri, 2021. "Analyzing Spatial Patterns of Health Vulnerability to Drought in the Brazilian Semiarid Region," IJERPH, MDPI, vol. 18(12), pages 1-19, June.
    15. Amanda de O. Regueira & Henderson Silva Wanderley, 2022. "Changes in rainfall rates and increased number of extreme rainfall events in Rio de Janeiro city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3833-3847, December.
    16. Ibrahim Abdulai Sawaneh & Luo Fan, 2021. "The Mediating Role of Disaster Policy Implementation in Disaster Risk Reduction and Sustainable Development in Sierra Leone," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    17. C. Negulescu & F. Smai & R. Quique & A. Hohmann & U. Clain & R. Guidez & A. Tellez-Arenas & A. Quentin & G. Grandjean, 2023. "VIGIRISKS platform, a web-tool for single and multi-hazard risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 593-618, January.
    18. Silva, Antonio Samuel Alves & Menezes, Rômulo Simões Cezar & Rosso, Osvaldo A. & Stosic, Borko & Stosic, Tatijana, 2021. "Complexity entropy-analysis of monthly rainfall time series in northeastern Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    19. Mercio Cerbaro & Stephen Morse & Richard Murphy & Sarah Middlemiss & Dimitrios Michelakis, 2022. "Assessing Urban Vulnerability to Flooding: A Framework to Measure Resilience Using Remote Sensing Approaches," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    20. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06059-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.