IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i2d10.1007_s11069-023-06040-8.html
   My bibliography  Save this article

Submarine landslide tsunami hazard assessment for the western Makran based on a deterministic approach

Author

Listed:
  • Mohammadsadegh Nouri

    (University of Tehran
    University of Delaware)

  • Amin Rashidi

    (Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA)

  • Masoud Montazeri Namin

    (University of Tehran)

  • Dan H. Shugar

    (University of Calgary)

Abstract

The Makran region, which borders southern Iran and Pakistan along the Gulf of Oman, has experienced multiple tsunamis in the last century, with some being triggered by submarine landslides. However, the role played by submarine landslides has been largely neglected in tsunami hazard assessments in the western Makran. In the present study, four different submarine landslide scenarios with volumes of 10–40 km3 are simulated on 25 locations in the western Makran, resulting in 100 different hypothetical scenarios. The results indicate that Oman’s coastline, a country in the western part of Makran subduction zone, is more vulnerable to the hazard of landslide-generated waves (maximum average of 3.1 m wave height) compared to Iran (maximum average 0.9 m height). Although Chabahar, Iran, and Muscat, Oman, two major cities in the region, experienced severe waves during some scenarios, it can be implied Muscat is more vulnerable to this kind of tsunami due to the significant gap between the maximum and average wave height for all scenarios. We further discuss that applying hypothetical worst-case scenarios can sometimes lead to an overestimation in tsunami hazard assessment. Therefore, more geological, sedimentological, and geotechnical considerations and studies are required for defining submarine landslide worst-case scenarios.

Suggested Citation

  • Mohammadsadegh Nouri & Amin Rashidi & Masoud Montazeri Namin & Dan H. Shugar, 2023. "Submarine landslide tsunami hazard assessment for the western Makran based on a deterministic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1117-1136, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06040-8
    DOI: 10.1007/s11069-023-06040-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06040-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06040-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anastasiia Shynkarenko & Katrina Kremer & Sylvia Stegmann & Paolo Bergamo & Agostiny Marrios Lontsi & Alexander Roesner & Steffen Hammerschmidt & Achim Kopf & Donat Fäh, 2022. "Geotechnical characterization and stability analysis of subaqueous slopes in Lake Lucerne (Switzerland)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 475-505, August.
    2. Hamid Zafarani & Leila Etemadsaeed & Mohammad Rahimi & Navid Kheirdast & Amin Rashidi & Anooshiravan Ansari & Mohammad Mokhtari & Morteza Eskandari-Ghadi, 2023. "Probabilistic tsunami hazard analysis for western Makran coasts, south-east Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1275-1311, January.
    3. Ehsan Rastgoftar & Mohsen Soltanpour, 2016. "Study and numerical modeling of 1945 Makran tsunami due to a probable submarine landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 929-945, September.
    4. Panon Latcharote & Khaled Al-Salem & Anawat Suppasri & Tanuspong Pokavanich & Shinji Toda & Yogeesha Jayaramu & Abdullah Al-Enezi & Alanoud Al-Ragum & Fumihiko Imamura, 2018. "Tsunami hazard evaluation for Kuwait and Arabian Gulf due to Makran Subduction Zone and Subaerial landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 127-152, September.
    5. Carl Harbitz & Finn Løvholt & Hilmar Bungum, 2014. "Submarine landslide tsunamis: how extreme and how likely?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(3), pages 1341-1374, July.
    6. Sascha Brune & Andrey Babeyko & Christoph Gaedicke & Stefan Ladage, 2010. "Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 205-218, May.
    7. Stephan Grilli & Christopher O’Reilly & Jeffrey Harris & Tayebeh Bakhsh & Babak Tehranirad & Saeideh Banihashemi & James Kirby & Christopher Baxter & Tamara Eggeling & Gangfeng Ma & Fengyan Shi, 2015. "Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 705-746, March.
    8. Linlin Li & Qiang Qiu & Zhenhua Huang, 2012. "Numerical modeling of the morphological change in Lhok Nga, west Banda Aceh, during the 2004 Indian Ocean tsunami: understanding tsunami deposits using a forward modeling method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1549-1574, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandi C. Thran & Sascha Brune & Jody M. Webster & Dale Dominey-Howes & Daniel Harris, 2021. "Examining the impact of the Great Barrier Reef on tsunami propagation using numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 347-388, August.
    2. Fatemeh Nemati & Stephan T. Grilli & Mansour Ioualalen & Laurie Boschetti & Christophe Larroque & Jenny Trevisan, 2019. "High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 553-586, March.
    3. Stéphan T. Grilli & Maryam Mohammadpour & Lauren Schambach & Annette R. Grilli, 2022. "Tsunami coastal hazard along the US East Coast from coseismic sources in the Açores convergence zone and the Caribbean arc areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1431-1478, March.
    4. Haixiao Jing & Guoding Chen & Changgen Liu & Wen Wang & Juanli Zuo, 2020. "Dispersive effects of water waves generated by submerged landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1917-1941, September.
    5. Laurie Boschetti & Mansour Ioualalen & Fatemeh Nemati & Stephan Grilli & Jean-Xavier Dessa & Christophe Larroque, 2020. "Tsunami intensity scale based on wave amplitude and current applied to the French Riviera: the case study of local seismicity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 219-248, May.
    6. Donaldo Mauricio Bran & Fermín Palma & Sebastián Principi & Emanuele Lodolo & Luca Baradello & Jorge Gabriel Lozano & Alejandro Alberto Tassone, 2023. "High-resolution seismic characterization of post-glacial subaqueous mass movements in the Beagle Channel (Tierra del Fuego, Argentina): dynamics and tsunami hazard implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 455-477, August.
    7. Amin Rashidi & Zaher Hossein Shomali & Denys Dutykh & Nasser Keshavarz Farajkhah, 2020. "Tsunami hazard assessment in the Makran subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 861-875, January.
    8. Love Råman Vinnå & Damien Bouffard & Alfred Wüest & Stéphanie Girardclos & Nathalie Dubois, 2020. "Assessing Subaquatic Mass Movement Hazards: an Integrated Observational and Hydrodynamic Modelling Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4133-4146, October.
    9. Linlin Li & Zhenhua Huang & Qiang Qiu, 2014. "Numerical simulation of erosion and deposition at the Thailand Khao Lak coast during the 2004 Indian Ocean tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2251-2277, December.
    10. Teresa Vera San Martín & Gary Rodriguez Rosado & Patricia Arreaga Vargas & Leonardo Gutierrez, 2018. "Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 275-297, August.
    11. Fatemeh Nemati & Lucinda Leonard & Richard Thomson & Gwyn Lintern & Soroush Kouhi, 2023. "Numerical modeling of a potential landslide-generated tsunami in the southern Strait of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 2029-2054, June.
    12. H. Taubenböck & N. Goseberg & G. Lämmel & N. Setiadi & T. Schlurmann & K. Nagel & F. Siegert & J. Birkmann & K.-P. Traub & S. Dech & V. Keuck & F. Lehmann & G. Strunz & H. Klüpfel, 2013. "Risk reduction at the “Last-Mile”: an attempt to turn science into action by the example of Padang, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 915-945, January.
    13. Jun-Whan Lee & Jennifer L. Irish & Robert Weiss, 2020. "Rapid prediction of alongshore run-up distribution from near-field tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1157-1180, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06040-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.