IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i14d10.1007_s11069-025-07437-3.html
   My bibliography  Save this article

Tsunami hazard potential of submarine landslides in the southwestern East Sea (Sea of Japan)

Author

Listed:
  • Deniz Cukur

    (Korea Institute of Geoscience and Mineral Resources, Marine Geology and Energy Division)

  • Xiaoming Wang

    (GNS Science
    Tsinghua University)

  • Aaron Micallef

    (University of Malta
    Monterey Bay Aquarium Research Institute)

  • Senay Horozal

    (University of Malta)

  • In-Kwon Um

    (Korea Institute of Geoscience and Mineral Resources, Marine Geology and Energy Division)

  • Gee-Soo Kong

    (Korea Institute of Geoscience and Mineral Resources, Marine Geology and Energy Division)

  • Seong-Pil Kim

    (Korea Institute of Geoscience and Mineral Resources, Marine Geology and Energy Division)

  • Yaoru Liu

    (Tsinghua University)

Abstract

This study reveals that submarine landslides could pose a significant tsunami threat to the northeast (NE) coast of South Korea, with potentials of causing large damages and casualties. Recent bathymetric surveys identified four large submarine landslides (namely SL1 to SL4) at water depth ranging from 400 to 600 m in the southwestern East Sea (Sea of Japan), with volumes ranging between 2.1 and 4.4 km3. We evaluated tsunami potentials of these landslides with the COMCOT model. Numerical results show that these landslides, particularly SL3, could cause significant tsunami impact along the NE coast, with tsunami heights up to 8.0 m and current speeds up to 8.2 m/s at the coastline. Major cities along this coast, such as Gangneung and Donghae, are at risk of very short tsunami travel times (6–12 min) in all the simulated scenarios. The simulations also predict ~ 200 m inundation extent on land with flow depths of ~ 2 m in low-lying areas of coastal cities (e.g., Gangneung), indicating high potential of damages to buildings and infrastructure. We also examine major parameters that dominate the interaction between the submarine landslide and the resulting tsunami heights. Our analyses indicate that the rate of displaced volume of material with time, is closely linked to the steepness of the slip surface, significantly affects the tsunami heights. Additionally, comparisons with historical tsunami records on the NE coast of Korea suggest that local submarine landslides could cause much greater coastal impacts than the past, distant earthquake-triggered tsunamis. Our findings provide new insights into the understanding of tsunami hazards in the NE coast of Korea, as well as valuable information for tsunami education, exposure analysis, and mitigation planning in this region.

Suggested Citation

  • Deniz Cukur & Xiaoming Wang & Aaron Micallef & Senay Horozal & In-Kwon Um & Gee-Soo Kong & Seong-Pil Kim & Yaoru Liu, 2025. "Tsunami hazard potential of submarine landslides in the southwestern East Sea (Sea of Japan)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(14), pages 16447-16479, August.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:14:d:10.1007_s11069-025-07437-3
    DOI: 10.1007/s11069-025-07437-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07437-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07437-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Carl Harbitz & Finn Løvholt & Hilmar Bungum, 2014. "Submarine landslide tsunamis: how extreme and how likely?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(3), pages 1341-1374, July.
    2. Anawat Suppasri & Erick Mas & Ingrid Charvet & Rashmin Gunasekera & Kentaro Imai & Yo Fukutani & Yoshi Abe & Fumihiko Imamura, 2013. "Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 319-341, March.
    3. Stuart Fraser & William Power & Xiaoming Wang & Laura Wallace & Christof Mueller & David Johnston, 2014. "Tsunami inundation in Napier, New Zealand, due to local earthquake sources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 415-445, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Jain & Deepali Virmani & Ajith Abraham, 2021. "Tsunami in the last 15 years: a bibliometric analysis with a detailed overview and future directions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 139-172, March.
    2. Haixiao Jing & Guoding Chen & Changgen Liu & Wen Wang & Juanli Zuo, 2020. "Dispersive effects of water waves generated by submerged landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1917-1941, September.
    3. Yoshiki Ogawa & Yoshihide Sekimoto & Ryosuke Shibasaki, 2021. "Estimation of earthquake damage to urban environments using sparse modeling," Environment and Planning B, , vol. 48(5), pages 1075-1090, June.
    4. G. M. Smart & K. H. M. Crowley & E. M. Lane, 2016. "Estimating tsunami run-up," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1933-1947, February.
    5. Kevin D. Henry & Nathan J. Wood & Tim G. Frazier, 2017. "Influence of road network and population demand assumptions in evacuation modeling for distant tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1665-1687, February.
    6. Donaldo Mauricio Bran & Fermín Palma & Sebastián Principi & Emanuele Lodolo & Luca Baradello & Jorge Gabriel Lozano & Alejandro Alberto Tassone, 2023. "High-resolution seismic characterization of post-glacial subaqueous mass movements in the Beagle Channel (Tierra del Fuego, Argentina): dynamics and tsunami hazard implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 455-477, August.
    7. Emily Mongold & Jack W. Baker, 2025. "Quantifying climate change risk through natural hazard losses to inform adaptation action," Climatic Change, Springer, vol. 178(4), pages 1-25, April.
    8. K. Nanayakkara & W. Dias, 2016. "Fragility curves for structures under tsunami loading," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 471-486, January.
    9. Maria Concetta Oddo & Piero Colajanni & Liborio Cavaleri, 2025. "Influence of height on Tsunami fragility of masonry buildings resulting from Monte Carlo analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(6), pages 7727-7759, April.
    10. Radianta Triatmadja & Benazir & Marcio Tahalele & Kuswandi & Afaf Nadiyah Rifa Pratomo, 2025. "Impact of tsunamis on buildings in array layouts as macro roughness: lessons from the 2018 Anak Krakatau event through DualSPHysics modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(8), pages 9679-9704, May.
    11. Joshua Macabuag & Tiziana Rossetto & Ioanna Ioannou & Anawat Suppasri & Daisuke Sugawara & Bruno Adriano & Fumihiko Imamura & Ian Eames & Shunichi Koshimura, 2016. "A proposed methodology for deriving tsunami fragility functions for buildings using optimum intensity measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1257-1285, November.
    12. Mandi C. Thran & Sascha Brune & Jody M. Webster & Dale Dominey-Howes & Daniel Harris, 2021. "Examining the impact of the Great Barrier Reef on tsunami propagation using numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 347-388, August.
    13. Caterina Negulescu & Abed Benaïchouche & Anne Lemoine & Sylvestre Roy & Rodrigo Pedreros, 2020. "Adjustability of exposed elements by updating their capacity for resistance after a damaging event: application to an earthquake–tsunami cascade scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 753-793, October.
    14. Love Råman Vinnå & Damien Bouffard & Alfred Wüest & Stéphanie Girardclos & Nathalie Dubois, 2020. "Assessing Subaquatic Mass Movement Hazards: an Integrated Observational and Hydrodynamic Modelling Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4133-4146, October.
    15. Natt Leelawat & Anawat Suppasri & Ingrid Charvet & Fumihiko Imamura, 2014. "Building damage from the 2011 Great East Japan tsunami: quantitative assessment of influential factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 449-471, September.
    16. I. Ramalho & R. Omira & P. Terrinha, 2025. "Tsunami hazard induced by a submarine landslide in the Tagus delta off Lisbon (Portugal)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(6), pages 6551-6570, April.
    17. Dane Wiebe & Daniel Cox, 2014. "Application of fragility curves to estimate building damage and economic loss at a community scale: a case study of Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2043-2061, April.
    18. Stuart Fraser & William Power & Xiaoming Wang & Laura Wallace & Christof Mueller & David Johnston, 2014. "Tsunami inundation in Napier, New Zealand, due to local earthquake sources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 415-445, January.
    19. Teresa Vera San Martín & Gary Rodriguez Rosado & Patricia Arreaga Vargas & Leonardo Gutierrez, 2018. "Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 275-297, August.
    20. Azin Fathianpour & Suzanne Wilkinson & Mostafa Babaeian Jelodar & Barry Evans, 2023. "Reducing the vulnerability of tourists to tsunami: challenges for decision-makers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1315-1339, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:14:d:10.1007_s11069-025-07437-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.