IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i3d10.1007_s11069-022-05491-9.html
   My bibliography  Save this article

Assessment of agricultural drought loss using a skewed grey cloud ordered clustering model

Author

Listed:
  • Dongxing Zhang

    (North China University of Water Resources and Electric Power)

  • Dang Luo

    (North China University of Water Resources and Electric Power
    North China University of Water Resources and Electric Power)

Abstract

A skewed grey cloud ordered clustering model is proposed to overcome the problem that the existing grey clustering assessment results are inconsistent with objective reality due to the greyness, fuzziness, and randomness of information in the process of agricultural drought loss assessment. The skewed grey cloud model is built by split-combination possibility function, which is based on the normal grey cloud model. The grey cloud constraint interval is solved using the outer envelope curve and expectation curve of the skewed grey cloud, and the classification weight of the index is derived using the Gini coefficient. Then, the grey cloud constraint interval and the weight coefficient of comprehensive decision measure are combined to establish the ordered clustering criterion of skewed grey cloud. The degree of agricultural drought loss in Henan Province is examined from 2006 to 2019, and the assessment results are compared to those of the grey clustering model, normal grey cloud clustering model and comprehensive index method. The results reveal that the skewed grey cloud model’s evaluation results are more in line with the actual scenario of agricultural drought in Henan Province, showing the model’s applicability and usefulness.

Suggested Citation

  • Dongxing Zhang & Dang Luo, 2022. "Assessment of agricultural drought loss using a skewed grey cloud ordered clustering model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2787-2810, December.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05491-9
    DOI: 10.1007/s11069-022-05491-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05491-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05491-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Quijano & Miguel Jaimes & Marco Torres & Eduardo Reinoso & Luisarturo Castellanos & Jesús Escamilla & Mario Ordaz, 2015. "Event-based approach for probabilistic agricultural drought risk assessment under rainfed conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1297-1318, March.
    2. Wei Pei & Cuizhu Tian & Qiang Fu & Yongtai Ren & Tianxiao Li, 2022. "Risk analysis and influencing factors of drought and flood disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1599-1620, February.
    3. Ribeiro, Andreia F.S. & Russo, Ana & Gouveia, Célia M. & Páscoa, Patrícia, 2019. "Copula-based agricultural drought risk of rainfed cropping systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Watinee Thavorntam & Netnapid Tantemsapya & Leisa Armstrong, 2015. "A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in Northeast Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1453-1474, July.
    5. Qi Zhang & Jiquan Zhang & Denghua Yan & Yulong Bao, 2013. "Dynamic risk prediction based on discriminant analysis for maize drought disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1275-1284, February.
    6. Zuliqar Ali & Ijaz Hussain & Muhammad Faisal & Hafiza Mamona Nazir & Mitwali Abd-el Moemen & Tajammal Hussain & Sadaf Shamsuddin, 2017. "A Novel Multi-Scalar Drought Index for Monitoring Drought: the Standardized Precipitation Temperature Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4957-4969, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Li & Tianjie Lei & Jing Qin & Jiabao Wang & Weiwei Wang & Baoyin Liu & Dongpan Chen & Guansheng Qian & Li Zhang & Jingxuan Lu, 2023. "The Method of Segmenting the Early Warning Thresholds Based on Fisher Optimal Segmentation," Land, MDPI, vol. 12(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Omidreza Mikaili & Majid Rahimzadegan, 2022. "Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2511-2529, April.
    4. M. C. Marulanda & J. C. Llera & G. A. Bernal & O. D. Cardona, 2021. "Epistemic uncertainty in probabilistic estimates of seismic risk resulting from multiple hazard models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3203-3227, September.
    5. Nadjib Haied & Atif Foufou & Samira Khadri & Adel Boussaid & Mohamed Azlaoui & Nabil Bougherira, 2023. "Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    6. Farman Ali & Bing-Zhao Li & Zulfiqar Ali, 2021. "Strengthening Drought Monitoring Module by Ensembling Auxiliary Information Based Varying Estimators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3235-3252, August.
    7. V. K. Prajapati & M. Khanna & M. Singh & R. Kaur & R. N. Sahoo & D. K. Singh, 2021. "Evaluation of time scale of meteorological, hydrological and agricultural drought indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 89-109, October.
    8. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    9. Yang Li & Fan Wang & Ye Shen & Yichen Qin & Jiesheng Si, 2022. "Selection of mixed copula for association modeling with tied observations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1127-1180, December.
    10. Qianchuan Mi & Chuanyou Ren & Yanhua Wang & Xining Gao & Limin Liu & Yue Li, 2023. "A robust ensemble drought index: construction and assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1139-1159, March.
    11. Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.
    12. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Yaxu Wang & Juan Lv & Hongquan Sun & Huiqiang Zuo & Hui Gao & Yanping Qu & Zhicheng Su & Xiaojing Yang & Jianming Yin, 2022. "Dynamic agricultural drought risk assessment for maize using weather generator and APSIM crop models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3083-3100, December.
    14. Longxia Qian & Ren Zhang & Mei Hong & Hongrui Wang & Lizhi Yang, 2016. "A new multiple integral model for water shortage risk assessment and its application in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 43-67, January.
    15. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    16. Jew Das & N. V. Umamahesh, 2018. "Spatio-Temporal Variation of Water Availability in a River Basin under CORDEX Simulated Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1399-1419, March.
    17. Zhang, Fan & Cui, Ningbo & Guo, Shanshan & Yue, Qiong & Jiang, Shouzheng & Zhu, Bin & Yu, Xiuyun, 2023. "Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach," Agricultural Water Management, Elsevier, vol. 282(C).
    18. Zulfiqar Ali & Asad Ellahi & Ijaz Hussain & Amna Nazeer & Sadia Qamar & Guangheng Ni & Muhammad Faisal, 2021. "Reduction of Errors in Hydrological Drought Monitoring – A Novel Statistical Framework for Spatio-Temporal Assessment of Drought," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4363-4380, October.
    19. Zhang, Tianyuan & Tan, Qian & Wang, Shuping & Zhang, Tong & Hu, Kejia & Zhang, Shan, 2022. "Assessment and management of composite risk in irrigated agriculture under water-food-energy nexus and uncertainty," Agricultural Water Management, Elsevier, vol. 262(C).
    20. Erin Coughlan de Perez & Maarten van Aalst & Richard Choularton & Bart van den Hurk & Simon Mason & Hannah Nissan & Saroja Schwager, 2019. "From rain to famine: assessing the utility of rainfall observations and seasonal forecasts to anticipate food insecurity in East Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 57-68, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05491-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.