IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i2d10.1007_s11069-021-05112-x.html
   My bibliography  Save this article

Urban traffic prediction using metrological data with fuzzy logic, long short-term memory (LSTM), and decision trees (DTs)

Author

Listed:
  • Sharaf AlKheder

    (Kuwait University)

  • Abdullah AlOmair

    (Kuwait University)

Abstract

In Kuwait, the transport sector is facing a daily traffic congestion pandemic. The traffic congestion is significantly influencing the economy and obstructing the development and production in the country. Extreme weather conditions also affect the roads’ traffic, causing considerable hazards to the transportation system. Precipitation, temperature, wind speed, and visibility are the principal weather variables influencing Kuwait’s traffic. Two selected roads were studied and analyzed to conduct this research. It includes comprehensive deep learning to investigate and analyze the correlation between the weather variables and their impact on Kuwait’s roads and traffic congestion. Heat maps were used as a qualitative measure of the output variables for a better understanding of the data. Three machine learning approaches were selected: fuzzy logic, long short-term memory (LSTM), and decision trees. They were implemented on a dataset from Kuwait Control and Meteorological Center for the year of 2018. Moreover, a validation test of unseen data was implemented to verify the outputs of machine learning. The results indicated that traffic congestion is evidently associated with the weather variables and that the temperature is the essential variable. Machine learning was developed to predict traffic congestion using weather data. The three presented models have demonstrated an overall good performance accuracy in classifying the data based on input features. However, the LSTM has proven to have the best results of the three models.

Suggested Citation

  • Sharaf AlKheder & Abdullah AlOmair, 2022. "Urban traffic prediction using metrological data with fuzzy logic, long short-term memory (LSTM), and decision trees (DTs)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1685-1719, March.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:2:d:10.1007_s11069-021-05112-x
    DOI: 10.1007/s11069-021-05112-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05112-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05112-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrick Hambly & Jean Andrey & Brian Mills & Chris Fletcher, 2013. "Projected implications of climate change for road safety in Greater Vancouver, Canada," Climatic Change, Springer, vol. 116(3), pages 613-629, February.
    2. Jean Andrey & Brian Mills & Mike Leahy & Jeff Suggett, 2003. "Weather as a Chronic Hazard for Road Transportation in Canadian Cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 319-343, March.
    3. Muhammad Sabir & Jos van Ommeren & Mark Koetse & Piet Rietveld, 2008. "Welfare Effects of Adverse Weather through Speed Changes in Car Commuting Trips," Tinbergen Institute Discussion Papers 08-087/3, Tinbergen Institute.
    4. Islam, Mazharul & Alharthi, Majed & Alam, Md. Mahmudul, 2018. "The Impacts of Climate Change on Road Traffic Accidents in Saudi Arabia," OSF Preprints 2p5aj, Center for Open Science.
    5. Lars Böcker & Martin Dijst & Jan Prillwitz, 2013. "Impact of Everyday Weather on Individual Daily Travel Behaviours in Perspective: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 71-91, January.
    6. Yichuan Peng & Yuming Jiang & Jian Lu & Yajie Zou, 2018. "Examining the effect of adverse weather on road transportation using weather and traffic sensors," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-14, October.
    7. Andrey, Jean, 2010. "Long-term trends in weather-related crash risks," Journal of Transport Geography, Elsevier, vol. 18(2), pages 247-258.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angus Eugene Retallack & Bertram Ostendorf, 2020. "Relationship Between Traffic Volume and Accident Frequency at Intersections," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    2. Islam, Mazharul & Alharthi, Majed & Alam, Md. Mahmudul, 2018. "The Impacts of Climate Change on Road Traffic Accidents in Saudi Arabia," OSF Preprints 2p5aj, Center for Open Science.
    3. Yajie Zou & Yue Zhang & Kai Cheng, 2021. "Exploring the Impact of Climate and Extreme Weather on Fatal Traffic Accidents," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    4. Black, Alan W. & Mote, Thomas L., 2015. "Effects of winter precipitation on automobile collisions, injuries, and fatalities in the United States," Journal of Transport Geography, Elsevier, vol. 48(C), pages 165-175.
    5. Nordin, Lina & Arvidsson, Anna K., 2014. "Are winter road maintenance practices energy efficient? A geographical analysis in terms of traffic energy use," Journal of Transport Geography, Elsevier, vol. 41(C), pages 163-174.
    6. Zhongyu Han & Hatim O. Sharif, 2020. "Investigation of the Relationship between Rainfall and Fatal Crashes in Texas, 1994–2018," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    7. Hyuk-Jae Roh, 2020. "Modelling chronic winter hazards as a function of precipitation and temperature," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1723-1745, November.
    8. David Jaroszweski & Lee Chapman & Judith Petts, 2013. "Climate change and road freight safety: a multidisciplinary exploration," Climatic Change, Springer, vol. 120(4), pages 785-799, October.
    9. Andrey, Jean & Hambly, Derrick & Mills, Brian & Afrin, Sadia, 2013. "Insights into driver adaptation to inclement weather in Canada," Journal of Transport Geography, Elsevier, vol. 28(C), pages 192-203.
    10. Daniel Burow & Christopher Atkinson, 2019. "An examination of traffic volume during snow events in northeast Ohio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1179-1189, November.
    11. Tsapakis, Ioannis & Cheng, Tao & Bolbol, Adel, 2013. "Impact of weather conditions on macroscopic urban travel times," Journal of Transport Geography, Elsevier, vol. 28(C), pages 204-211.
    12. Derrick Hambly & Jean Andrey & Brian Mills & Chris Fletcher, 2013. "Projected implications of climate change for road safety in Greater Vancouver, Canada," Climatic Change, Springer, vol. 116(3), pages 613-629, February.
    13. Bartosz Bursa & Markus Mailer & Kay W. Axhausen, 2022. "Intra-destination travel behavior of alpine tourists: a literature review on choice determinants and the survey work," Transportation, Springer, vol. 49(5), pages 1465-1516, October.
    14. Ashley R. Coles & Kyle E. Walker, 2021. "Assessing motorist behavior during flash floods in Tucson, Arizona," Transportation, Springer, vol. 48(6), pages 3037-3057, December.
    15. Haojie Lian & Pengfei Sun & Zhuxuan Meng & Shengze Li & Peng Wang & Yilin Qu, 2023. "LIDAR Point Cloud Augmentation for Dusty Weather Based on a Physical Simulation," Mathematics, MDPI, vol. 12(1), pages 1-15, December.
    16. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    17. Kapitza, Jonas, 2022. "How people get to work at night. A discrete choice model approach towards the influence of nighttime on the choice of transport mode for commuting to work," Journal of Transport Geography, Elsevier, vol. 104(C).
    18. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2015. "Understanding the effects of complex seasonality on suburban daily transit ridership," Journal of Transport Geography, Elsevier, vol. 46(C), pages 67-80.
    19. Hwang, Taesung & Chung, Koohong & Ragland, David & Chan, Chin-Yao, 2008. "Identification of High Collision Concentration Locations Under Wet Weather Conditions," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1xp3g5b4, Institute of Transportation Studies, UC Berkeley.
    20. Benita, Francisco, 2020. "Carpool to work: Determinants at the county-level in the United States," Journal of Transport Geography, Elsevier, vol. 87(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:2:d:10.1007_s11069-021-05112-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.