IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i3d10.1007_s11069-020-04263-7.html
   My bibliography  Save this article

Hydrothermal anomalies of the Earth's surface and crustal seismicity related to Ms8.0 Wenchuan EQ

Author

Listed:
  • Shuo Zheng

    (Anhui University
    University of Science and Technology of China)

  • Kai Qin

    (China University of Mining and Technology)

  • Lixin Wu

    (Central South University)

  • Yanfei An

    (Anhui University)

  • Qifeng Yin

    (Anhui University)

  • Chunkit Lai

    (University of Brunei Darussalam)

Abstract

Hydrothermal anomalies related to the Ms8.0 Wenchuan earthquake (EQ) on May 12, 2009, have been widely reported. However, the reported anomalies have not been associated with multi-geosphere analysis, and space–time analysis with crustal seismicity is lacking. In this paper, the space–time variation of hydrothermal parameters, including soil moisture, soil temperature, near-surface relative humidity (RHsig995) and air temperature (TMPsfc), was first extracted and analyzed with the NCEP-FNL reanalysis dataset. The b-value (a seismic parameter from the Gutenberg–Richter law) was calculated and mapped to unravel the crustal stress and rock rupture. Our results reveal a similar time window for hydrothermal anomalies on April 20 and April 30, 2008, and these anomalies are mainly distributed along the southern and middle parts of the Longmenshan fault zone. The surface temperature anomalies lag behind the humidity anomalies, and the accelerating stress accumulation started since June 2007 and lasted for eight to nine months before the mainshock. The b-value mapping shows a segmented difference along strike of the Longmenshan fault, and that regional stress accumulated mainly in the southern parts of the F2 and F3 faults. We propose the occurrence of a complex coupling process led by crustal stress buildup before the Wenchuan EQ. The anomalies are concentrated in the southern part of the surface rupture zone. The prolonged crustal stress accumulation corresponds to the short intermittent hydrothermal response on the Earth’s surface before the Wenchuan EQ. Our findings reveal new hydrothermal anomalies in the Earth’s surface and atmosphere and explore direct link with seismogenic processes in the crust.

Suggested Citation

  • Shuo Zheng & Kai Qin & Lixin Wu & Yanfei An & Qifeng Yin & Chunkit Lai, 2020. "Hydrothermal anomalies of the Earth's surface and crustal seismicity related to Ms8.0 Wenchuan EQ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2097-2114, December.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04263-7
    DOI: 10.1007/s11069-020-04263-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04263-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04263-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danijel Schorlemmer & Stefan Wiemer & Max Wyss, 2005. "Variations in earthquake-size distribution across different stress regimes," Nature, Nature, vol. 437(7058), pages 539-542, September.
    2. Danijel Schorlemmer & Stefan Wiemer, 2005. "Microseismicity data forecast rupture area," Nature, Nature, vol. 434(7037), pages 1086-1086, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Singh & Indrajit Roy & Santosh Kumar & J. Kayal, 2015. "Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 33-49, May.
    2. Biton, Dionessa C. & Tarun, Anjali B. & Batac, Rene C., 2020. "Comparing spatio-temporal networks of intermittent avalanche events: Experiment, model, and empirical data," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Marcus Herrmann & Ester Piegari & Warner Marzocchi, 2022. "Revealing the spatiotemporal complexity of the magnitude distribution and b-value during an earthquake sequence," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. C. Collettini & M. R. Barchi & N. Paola & F. Trippetta & E. Tinti, 2022. "Rock and fault rheology explain differences between on fault and distributed seismicity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Daolong Chen & Changgen Xia & Huini Liu & Xiling Liu & Kun Du, 2022. "Research on b Value Estimation Based on Apparent Amplitude-Frequency Distribution in Rock Acoustic Emission Tests," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    6. Matteo Taroni & Giorgio Vocalelli & Andrea De Polis, 2021. "Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach," Forecasting, MDPI, vol. 3(3), pages 1-9, August.
    7. Futoshi Yamashita & Eiichi Fukuyama & Shiqing Xu & Hironori Kawakata & Kazuo Mizoguchi & Shigeru Takizawa, 2021. "Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. F. A. Nava & V. H. Márquez-Ramírez & F. R. Zúñiga & C. Lomnitz, 2017. "Gutenberg–Richter b-value determination and large-magnitudes sampling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 1-11, May.
    9. Huiling Zhou & Hejun Su & Hui Zhang & Chenhua Li, 2017. "Correlations between soil gas and seismic activity in the Generalized Haiyuan Fault Zone, north-central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 763-776, January.
    10. Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
    11. J. L. Amaro-Mellado & A. Morales-Esteban & F. Martínez-Álvarez, 2018. "Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 739-758, September.
    12. Saman Yaghmaei-Sabegh & Gholamreza Ostadi-Asl, 2022. "Bayesian estimation of b-value in Gutenberg–Richter relationship: a sample size reduction approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1783-1797, February.
    13. Mendy Bengoubou-Valérius & Dominique Gibert, 2013. "Bootstrap determination of the reliability of b-values: an assessment of statistical estimators with synthetic magnitude series," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 443-459, January.
    14. Pastén, Denisse & Pavez-Orrego, Claudia, 2023. "Multifractal time evolution for intraplate earthquakes recorded in southern Norway during 1980–2021," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Kalpna Gahalaut & Rajesh Rekapalli, 2022. "On the enhanced post-impoundment seismicity in the Three Gorges Reservoir region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1697-1712, September.
    16. M. Hamdache & J. A. Peláez & A. Kijko & A. Smit, 2017. "Energetic and spatial characterization of seismicity in the Algeria–Morocco region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 273-293, April.
    17. Gaucher, Emmanuel & Schoenball, Martin & Heidbach, Oliver & Zang, Arno & Fokker, Peter A. & van Wees, Jan-Diederik & Kohl, Thomas, 2015. "Induced seismicity in geothermal reservoirs: A review of forecasting approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1473-1490.
    18. Bahruz Ahadov & Serkan Ozturk, 2022. "Spatial variations of fundamental seismotectonic parameters for the earthquake occurrences in the Eastern Mediterranean and Caucasus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2177-2192, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04263-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.