IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i2d10.1007_s11069-016-2514-7.html
   My bibliography  Save this article

Energetic and spatial characterization of seismicity in the Algeria–Morocco region

Author

Listed:
  • M. Hamdache

    (CRAAG)

  • J. A. Peláez

    (University of Jaén)

  • A. Kijko

    (University of Pretoria Natural Hazard Centre)

  • A. Smit

    (University of Pretoria Natural Hazard Centre)

Abstract

We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.

Suggested Citation

  • M. Hamdache & J. A. Peláez & A. Kijko & A. Smit, 2017. "Energetic and spatial characterization of seismicity in the Algeria–Morocco region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 273-293, April.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:2:d:10.1007_s11069-016-2514-7
    DOI: 10.1007/s11069-016-2514-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2514-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2514-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danijel Schorlemmer & Stefan Wiemer & Max Wyss, 2005. "Variations in earthquake-size distribution across different stress regimes," Nature, Nature, vol. 437(7058), pages 539-542, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Singh & Indrajit Roy & Santosh Kumar & J. Kayal, 2015. "Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 33-49, May.
    2. Biton, Dionessa C. & Tarun, Anjali B. & Batac, Rene C., 2020. "Comparing spatio-temporal networks of intermittent avalanche events: Experiment, model, and empirical data," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Marcus Herrmann & Ester Piegari & Warner Marzocchi, 2022. "Revealing the spatiotemporal complexity of the magnitude distribution and b-value during an earthquake sequence," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. C. Collettini & M. R. Barchi & N. Paola & F. Trippetta & E. Tinti, 2022. "Rock and fault rheology explain differences between on fault and distributed seismicity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Daolong Chen & Changgen Xia & Huini Liu & Xiling Liu & Kun Du, 2022. "Research on b Value Estimation Based on Apparent Amplitude-Frequency Distribution in Rock Acoustic Emission Tests," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    6. Matteo Taroni & Giorgio Vocalelli & Andrea De Polis, 2021. "Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach," Forecasting, MDPI, vol. 3(3), pages 1-9, August.
    7. Futoshi Yamashita & Eiichi Fukuyama & Shiqing Xu & Hironori Kawakata & Kazuo Mizoguchi & Shigeru Takizawa, 2021. "Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. F. A. Nava & V. H. Márquez-Ramírez & F. R. Zúñiga & C. Lomnitz, 2017. "Gutenberg–Richter b-value determination and large-magnitudes sampling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 1-11, May.
    9. Huiling Zhou & Hejun Su & Hui Zhang & Chenhua Li, 2017. "Correlations between soil gas and seismic activity in the Generalized Haiyuan Fault Zone, north-central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 763-776, January.
    10. Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
    11. J. L. Amaro-Mellado & A. Morales-Esteban & F. Martínez-Álvarez, 2018. "Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 739-758, September.
    12. Saman Yaghmaei-Sabegh & Gholamreza Ostadi-Asl, 2022. "Bayesian estimation of b-value in Gutenberg–Richter relationship: a sample size reduction approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1783-1797, February.
    13. Mendy Bengoubou-Valérius & Dominique Gibert, 2013. "Bootstrap determination of the reliability of b-values: an assessment of statistical estimators with synthetic magnitude series," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 443-459, January.
    14. Pastén, Denisse & Pavez-Orrego, Claudia, 2023. "Multifractal time evolution for intraplate earthquakes recorded in southern Norway during 1980–2021," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Kalpna Gahalaut & Rajesh Rekapalli, 2022. "On the enhanced post-impoundment seismicity in the Three Gorges Reservoir region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1697-1712, September.
    16. Shuo Zheng & Kai Qin & Lixin Wu & Yanfei An & Qifeng Yin & Chunkit Lai, 2020. "Hydrothermal anomalies of the Earth's surface and crustal seismicity related to Ms8.0 Wenchuan EQ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2097-2114, December.
    17. Bahruz Ahadov & Serkan Ozturk, 2022. "Spatial variations of fundamental seismotectonic parameters for the earthquake occurrences in the Eastern Mediterranean and Caucasus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2177-2192, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:2:d:10.1007_s11069-016-2514-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.