IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v87y2024i1d10.1007_s00184-023-00906-4.html
   My bibliography  Save this article

Poisson generalized Lindley process and its properties

Author

Listed:
  • Ji Hwan Cha

    (Ewha Womans University)

  • F. G. Badía

    (University of Zaragoza)

Abstract

In spite of the practical usefulness of the nonhomogeneous Poisson process, it still has some restrictions. To overcome these restrictions, the Poisson Lindley process has been recently developed and introduced in Cha (Stat Probab Lett 152: 74–81, 2019). In this paper, we further generalize the Poisson Lindley process, so that the developed counting process model should have the restarting property and it should include the generalized Polya process as a special case. Some basic stochastic properties of the developed counting process model are derived. Dependence properties and stochastic comparisons are also discussed under a more general framework.

Suggested Citation

  • Ji Hwan Cha & F. G. Badía, 2024. "Poisson generalized Lindley process and its properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(1), pages 61-74, January.
  • Handle: RePEc:spr:metrik:v:87:y:2024:i:1:d:10.1007_s00184-023-00906-4
    DOI: 10.1007/s00184-023-00906-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-023-00906-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-023-00906-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jorge Navarro & Yolanda Águila, 2017. "Stochastic comparisons of distorted distributions, coherent systems and mixtures with ordered components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 627-648, November.
    2. Jorge Navarro, 2018. "Stochastic comparisons of coherent systems," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(4), pages 465-482, May.
    3. Ji Hwan Cha & Maxim Finkelstein, 2018. "Point Processes for Reliability Analysis," Springer Series in Reliability Engineering, Springer, number 978-3-319-73540-5, April.
    4. Francisco Germán Badía & Hyunju Lee, 2020. "On stochastic comparisons and ageing properties of multivariate proportional hazard rate mixtures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 355-375, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omid Shojaee & Majid Asadi & Maxim Finkelstein, 2021. "On Some Properties of $$\alpha $$ α -Mixtures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1213-1240, November.
    2. Omid Shojaee & Manoochehr Babanezhad, 2023. "On some stochastic comparisons of arithmetic and geometric mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 499-515, July.
    3. Antonio Arriaza & Jorge Navarro & Alfonso Suárez‐Llorens, 2018. "Stochastic comparisons of replacement policies in coherent systems under minimal repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 550-565, September.
    4. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    6. Navarro, Jorge & Arriaza, Antonio & Suárez-Llorens, Alfonso, 2019. "Minimal repair of failed components in coherent systems," European Journal of Operational Research, Elsevier, vol. 279(3), pages 951-964.
    7. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    8. Navarro, Jorge & Fernández-Martínez, Pedro, 2021. "Redundancy in systems with heterogeneous dependent components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 766-778.
    9. Ji Hwan Cha & Maxim Finkelstein, 2020. "Is perfect repair always perfect?," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 90-104, March.
    10. Krzysztof Jakubowski & Jacek Paś & Stanisław Duer & Jarosław Bugaj, 2021. "Operational Analysis of Fire Alarm Systems with a Focused, Dispersed and Mixed Structure in Critical Infrastructure Buildings," Energies, MDPI, vol. 14(23), pages 1-24, November.
    11. M. Salehi & Z. Shishebor & M. Asadi, 2019. "On the reliability modeling of weighted k-out-of-n systems with randomly chosen components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(5), pages 589-605, July.
    12. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zhong, 2019. "Scheduling of imperfect inspections for reliability critical systems with shock-driven defects and delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 89-98.
    13. Sareh Goli, 2019. "On the conditional residual lifetime of coherent systems under double regularly checking," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 352-363, June.
    14. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Optimal preventive replacement policy for homogeneous cold standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Torrado, Nuria & Arriaza, Antonio & Navarro, Jorge, 2021. "A study on multi-level redundancy allocation in coherent systems formed by modules," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. Maxim Finkelstein & Ji Hwan Cha, 2021. "On degradation-based imperfect repair and induced generalized renewal processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1026-1045, December.
    18. Ye, Kewei & Wang, Han & Ma, Xiaobing, 2023. "A generalized dynamic stress-strength interference model under δ-failure criterion for self-healing protective structure," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Mansour Shrahili & Mohamed Kayid & Mhamed Mesfioui, 2023. "Relative Orderings of Modified Proportional Hazard Rate and Modified Proportional Reversed Hazard Rate Models," Mathematics, MDPI, vol. 11(22), pages 1-28, November.
    20. Nil Kamal Hazra & Maxim Finkelstein, 2018. "On stochastic comparisons of finite mixtures for some semiparametric families of distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 988-1006, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:87:y:2024:i:1:d:10.1007_s00184-023-00906-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.