IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v86y2023i4d10.1007_s00184-022-00878-x.html
   My bibliography  Save this article

Communication-efficient distributed estimation for high-dimensional large-scale linear regression

Author

Listed:
  • Zhan Liu

    (Hubei University)

  • Xiaoluo Zhao

    (Hubei University)

  • Yingli Pan

    (Hubei University)

Abstract

In the Master-Worker distributed structure, this paper provides a regularized gradient-enhanced loss (GEL) function based on the high-dimensional large-scale linear regression with SCAD and adaptive LASSO penalty. The importance and originality of this paper have two aspects: (1) Computationally, to take full advantage of the computing power of each machine and speed up the convergence, our proposed distributed upgraded estimation method can make all Workers optimize their corresponding GEL functions in parallel, and the results are then aggregated by the Master; (2) In terms of communication, the proposed modified proximal alternating direction method of the multipliers (ADMM) algorithm is comparable to the Centralize method based on the full sample during a few rounds of communication. Under some mild assumptions, we establish the Oracle properties of the SCAD and adaptive LASSO penalized linear regression. The finite sample properties of the newly suggested method are assessed through simulation studies. An application to the HIV drug susceptibility study demonstrates the utility of the proposed method in practice.

Suggested Citation

  • Zhan Liu & Xiaoluo Zhao & Yingli Pan, 2023. "Communication-efficient distributed estimation for high-dimensional large-scale linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(4), pages 455-485, May.
  • Handle: RePEc:spr:metrik:v:86:y:2023:i:4:d:10.1007_s00184-022-00878-x
    DOI: 10.1007/s00184-022-00878-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-022-00878-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-022-00878-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Aijun Hu & Chujin Li & Jing Wu & Roberto Natella, 2021. "Communication-Efficient Modeling with Penalized Quantile Regression for Distributed Data," Complexity, Hindawi, vol. 2021, pages 1-16, January.
    5. Huixia Judy Wang & Ian W. McKeague & Min Qian, 2018. "Testing for marginal linear effects in quantile regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 433-452, March.
    6. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    2. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    3. Benjamin Poignard, 2020. "Asymptotic theory of the adaptive Sparse Group Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 297-328, February.
    4. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    5. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    6. Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    7. Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
    8. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    9. Jinfeng Xu & Zhiliang Ying, 2010. "Simultaneous estimation and variable selection in median regression using Lasso-type penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(3), pages 487-514, June.
    10. Wei Wang & Shou‐En Lu & Jerry Q. Cheng & Minge Xie & John B. Kostis, 2022. "Multivariate survival analysis in big data: A divide‐and‐combine approach," Biometrics, The International Biometric Society, vol. 78(3), pages 852-866, September.
    11. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    12. Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
    13. Xingcai Zhou & Hao Shen, 2022. "Communication-Efficient Distributed Learning for High-Dimensional Support Vector Machines," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    14. Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
    15. Weihua Zhao & Riquan Zhang & Jicai Liu, 2013. "Robust variable selection for the varying coefficient model based on composite L 1 -- L 2 regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2024-2040, September.
    16. Wang, Kangning & Li, Shaomin & Zhang, Benle, 2021. "Robust communication-efficient distributed composite quantile regression and variable selection for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    17. Shen, Yu & Liang, Han-Ying, 2018. "Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 1-18.
    18. Muhammad Amin & Lixin Song & Milton Abdul Thorlie & Xiaoguang Wang, 2015. "SCAD-penalized quantile regression for high-dimensional data analysis and variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 212-235, August.
    19. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    20. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:86:y:2023:i:4:d:10.1007_s00184-022-00878-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.