IDEAS home Printed from
   My bibliography  Save this article

Yet another breakdown point notion: EFSBP


  • Peter Ruckdeschel


  • Nataliya Horbenko



The breakdown point in its different variants is one of the central notions to quantify the global robustness of a procedure. We propose a simple supplementary variant which is useful in situations where we have no obvious or only partial equivariance: Extending the Donoho and Huber (The notion of breakdown point, Wadsworth, Belmont, 1983 ) Finite Sample Breakdown Point , we propose the Expected Finite Sample Breakdown Point to produce less configuration-dependent values while still preserving the finite sample aspect of the former definition. We apply this notion for joint estimation of scale and shape (with only scale-equivariance available), exemplified for generalized Pareto, generalized extreme value, Weibull, and Gamma distributions. In these settings, we are interested in highly-robust, easy-to-compute initial estimators; to this end we study Pickands-type and Location-Dispersion-type estimators and compute their respective breakdown points. Copyright Springer-Verlag 2012

Suggested Citation

  • Peter Ruckdeschel & Nataliya Horbenko, 2012. "Yet another breakdown point notion: EFSBP," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1025-1047, November.
  • Handle: RePEc:spr:metrik:v:75:y:2012:i:8:p:1025-1047
    DOI: 10.1007/s00184-011-0366-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kris Boudt & Derya Caliskan & Christophe Croux, 2011. "Robust explicit estimators of Weibull parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 187-209, March.
    2. Marazzi, A. & Ruffieux, C., 1999. "The truncated mean of an asymmetric distribution," Computational Statistics & Data Analysis, Elsevier, vol. 32(1), pages 79-100, November.
    3. Ruckdeschel, Peter & Rieder, Helmut, 2010. "Fisher information of scale," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1881-1885, December.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:75:y:2012:i:8:p:1025-1047. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.