IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i2d10.1007_s11009-025-10173-7.html
   My bibliography  Save this article

On the Topology of Higher-order Age-dependent Random Connection Models

Author

Listed:
  • Christian Hirsch

    (Aarhus University
    Aarhus University)

  • Peter Juhasz

    (Aarhus University)

Abstract

In this paper, we investigate the potential of the age-dependent random connection model (ADRCM) with the aim of representing higher-order networks. A key contribution of our work are probabilistic limit results in large domains. More precisely, we first prove that the higher-order degree distributions have a power-law tail. Second, we establish central limit theorems for the edge counts and Betti numbers of the ADRCM in the regime where the degree distribution is light tailed. Moreover, in the heavy-tailed regime, we prove that asymptotically, the recentered and suitably rescaled edge counts converge to a stable distribution. We also propose a modification of the ADRCM in the form of a thinning procedure that enables independent adjustment of the power-law exponents for vertex and edge degrees. To apply the derived theorems to finite networks, we conduct a simulation study illustrating that the power-law degree distribution exponents approach their theoretical limits for large networks. It also indicates that in the heavy-tailed regime, the limit distribution of the recentered and suitably rescaled Betti numbers is stable. We demonstrate the practical application of the theoretical results to real-world datasets by analyzing scientific collaboration networks based on data from arXiv.

Suggested Citation

  • Christian Hirsch & Peter Juhasz, 2025. "On the Topology of Higher-order Age-dependent Random Connection Models," Methodology and Computing in Applied Probability, Springer, vol. 27(2), pages 1-41, June.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10173-7
    DOI: 10.1007/s11009-025-10173-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-025-10173-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-025-10173-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinrich, L. & Wolf, W., 1993. "On the Convergence of U-Statistics with Stable Limit Distribution," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 266-278, February.
    2. Basrak, Bojan & Krizmanić, Danijel & Segers, Johan, 2012. "A functional limit theorem for dependent sequences with infinite variance stable limits," LIDAM Reprints ISBA 2012034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    4. Komjáthy, Júlia & Lodewijks, Bas, 2020. "Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1309-1367.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    2. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    5. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    7. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Ali Rezaei & Virág Kocsis-Jutka & Zeynep I. Gunes & Qing Zeng & Georg Kislinger & Franz Bauernschmitt & Huseyin Berkcan Isilgan & Laura R. Parisi & Tuğberk Kaya & Sören Franzenburg & Jonas Koppenbrink, 2025. "Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Venkat Ram Reddy Ganuthula & Krishna Kumar Balaraman & Nimish Vohra, 2025. "Hedonic Adaptation in the Age of AI: A Perspective on Diminishing Satisfaction Returns in Technology Adoption," Papers 2503.08074, arXiv.org.
    13. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    14. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Matt C. J. Denton & Luke D. Smith & Wenhao Xu & Jodeci Pugsley & Amelia Toghill & Daniel R. Kattnig, 2024. "Magnetosensitivity of tightly bound radical pairs in cryptochrome is enabled by the quantum Zeno effect," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Laura Portell & Sergi Morera & Helena Ramalhinho, 2022. "Door-to-Door Transportation Services for Reduced Mobility Population: A Descriptive Analytics of the City of Barcelona," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    17. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Mite Mijalkov & Ludvig Storm & Blanca Zufiria-Gerbolés & Dániel Veréb & Zhilei Xu & Anna Canal-Garcia & Jiawei Sun & Yu-Wei Chang & Hang Zhao & Emiliano Gómez-Ruiz & Massimiliano Passaretti & Sara Gar, 2025. "Computational memory capacity predicts aging and cognitive decline," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).
    20. Chung-Yuan Chang & Yen-Wei Feng & Tejender Singh Rawat & Shih-Wei Chen & Albert Shihchun Lin, 2025. "Optimization of laser annealing parameters based on bayesian reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2479-2492, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10173-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.