IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i4d10.1007_s11009-022-09929-2.html
   My bibliography  Save this article

Markovian Arrival Process Subject to Renewal Generated Binomial Catastrophes

Author

Listed:
  • Nitin Kumar

    (Indian Institute of Technology)

  • Umesh Chandra Gupta

    (Indian Institute of Technology)

Abstract

This paper investigates a population model which grows as per the Markovian arrival process and is influenced by binomial catastrophes that occur according to renewal process. That is, when a catastrophe attacks, an individual (element) of the population survives with probability p or dies with probability $$1-p$$ 1 - p , independent of anything else. Using the supplementary variable technique, the steady-state vector generating function (VGF) of the population size distribution at post-catastrophe epoch is obtained in terms of the infinite product of matrices. Further, the VGF of the population size distribution at arbitrary and pre-catastrophe epochs are also deduced. To make the model valuable for practitioners, a step-wise computing process for evaluation of the distribution of population size at various epochs is given. A recursive formula to compute factorial moments of the population size is also presented. Finally, some numerical results are included to illustrate the impact of parameters on the behavior of the model.

Suggested Citation

  • Nitin Kumar & Umesh Chandra Gupta, 2022. "Markovian Arrival Process Subject to Renewal Generated Binomial Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2287-2312, December.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09929-2
    DOI: 10.1007/s11009-022-09929-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09929-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09929-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Pradhan & U. C. Gupta, 2019. "Analysis of an infinite-buffer batch-size-dependent service queue with Markovian arrival process," Annals of Operations Research, Springer, vol. 277(2), pages 161-196, June.
    2. Nitin Kumar & U. C. Gupta, 2021. "Analysis of a population model with batch Markovian arrivals influenced by Markov arrival geometric catastrophes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(13), pages 3137-3158, July.
    3. F. P. Barbhuiya & Nitin Kumar & U. C. Gupta, 2019. "Batch Renewal Arrival Process Subject to Geometric Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 69-83, March.
    4. Economou, Antonis, 2003. "On the control of a compound immigration process through total catastrophes," European Journal of Operational Research, Elsevier, vol. 147(3), pages 522-529, June.
    5. Economou, Antonis & Fakinos, Demetrios, 2003. "A continuous-time Markov chain under the influence of a regulating point process and applications in stochastic models with catastrophes," European Journal of Operational Research, Elsevier, vol. 149(3), pages 625-640, September.
    6. Epaminondas G. Kyriakidis & Theodosis D. Dimitrakos, 2005. "Computation of the Optimal Policy for the Control of a Compound Immigration Process through Total Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 97-118, March.
    7. Kyriakidis, E. G., 1993. "A Markov decision algorithm for optimal pest control through uniform catastrophes," European Journal of Operational Research, Elsevier, vol. 64(1), pages 38-44, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
    2. F. P. Barbhuiya & Nitin Kumar & U. C. Gupta, 2019. "Batch Renewal Arrival Process Subject to Geometric Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 69-83, March.
    3. Nitin Kumar & U. C. Gupta, 2020. "A Renewal Generated Geometric Catastrophe Model with Discrete-Time Markovian Arrival Process," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1293-1324, September.
    4. Epaminondas G. Kyriakidis & Theodosis D. Dimitrakos, 2005. "Computation of the Optimal Policy for the Control of a Compound Immigration Process through Total Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 97-118, March.
    5. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    6. Nitin Kumar & U. C. Gupta, 2020. "Analysis of batch Bernoulli process subject to discrete-time renewal generated binomial catastrophes," Annals of Operations Research, Springer, vol. 287(1), pages 257-283, April.
    7. Antonio Di Crescenzo & Virginia Giorno & Balasubramanian Krishna Kumar & Amelia G. Nobile, 2018. "A Time-Non-Homogeneous Double-Ended Queue with Failures and Repairs and Its Continuous Approximation," Mathematics, MDPI, vol. 6(5), pages 1-23, May.
    8. Zhang Xiaoyan & Liu Liwei & Jiang Tao, 2015. "Analysis of an M/G/1 Stochastic Clearing Queue in a 3-Phase Environment," Journal of Systems Science and Information, De Gruyter, vol. 3(4), pages 374-384, August.
    9. Nitin Kumar & F. P. Barbhuiya & U. C. Gupta, 2020. "Unified killing mechanism in a single server queue with renewal input," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 246-259, March.
    10. Dimitrakos, T.D. & Kyriakidis, E.G., 2008. "A semi-Markov decision algorithm for the maintenance of a production system with buffer capacity and continuous repair times," International Journal of Production Economics, Elsevier, vol. 111(2), pages 752-762, February.
    11. Sergei Dudin & Olga Dudina, 2023. "Analysis of a Multi-Server Queue with Group Service and Service Time Dependent on the Size of a Group as a Model of a Delivery System," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
    12. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    13. Dieter Fiems & Koen De Turck, 2023. "Analysis of Discrete-Time Queues with Branching Arrivals," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    14. Di Crescenzo, A. & Giorno, V. & Nobile, A.G. & Ricciardi, L.M., 2008. "A note on birth-death processes with catastrophes," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2248-2257, October.
    15. Paula R. Bouzas & Nuria Ruiz-Fuentes & Carmen Montes-Gijón & Juan Eloy Ruiz-Castro, 2021. "Forecasting counting and time statistics of compound Cox processes: a focus on intensity phase type process, deletions and simultaneous events," Statistical Papers, Springer, vol. 62(1), pages 235-265, February.
    16. Souvik Ghosh & A. D. Banik & Joris Walraevens & Herwig Bruneel, 2022. "A detailed note on the finite-buffer queueing system with correlated batch-arrivals and batch-size-/phase-dependent bulk-service," 4OR, Springer, vol. 20(2), pages 241-272, June.
    17. Giorno, Virginia & Nobile, Amelia G., 2022. "On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    18. Kyriakidis, E.G. & Dimitrakos, T.D., 2006. "Optimal preventive maintenance of a production system with an intermediate buffer," European Journal of Operational Research, Elsevier, vol. 168(1), pages 86-99, January.
    19. Kyriakidis, E. G., 1995. "Optimal control of a simple immigration-birth-death process through total catastrophes," European Journal of Operational Research, Elsevier, vol. 81(2), pages 346-356, March.
    20. Antonio Crescenzo & Virginia Giorno & Balasubramanian Krishna Kumar & Amelia G. Nobile, 2012. "A Double-ended Queue with Catastrophes and Repairs, and a Jump-diffusion Approximation," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 937-954, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09929-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.