IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v208y2013i1p489-51410.1007-s10479-011-1025-x.html
   My bibliography  Save this article

Equilibrium balking strategies for a clearing queueing system in alternating environment

Author

Listed:
  • Antonis Economou
  • Athanasia Manou

Abstract

We consider a Markovian clearing queueing system, where the customers are accumulated according to a Poisson arrival process and the server removes all present customers at the completion epochs of exponential service cycles. This system may represent the visits of a transportation facility with unlimited capacity at a certain station. The system evolves in an alternating environment that influences the arrival and the service rates. We assume that the arriving customers decide whether to join the system or balk, based on a natural linear reward-cost structure. We study the balking behavior of the customers and derive the corresponding Nash equilibrium strategies under various levels of information. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
  • Handle: RePEc:spr:annopr:v:208:y:2013:i:1:p:489-514:10.1007/s10479-011-1025-x
    DOI: 10.1007/s10479-011-1025-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-1025-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-1025-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    2. Kyriakidis, E. G., 1994. "Stationary probabilities for a simple immigration-birth-death process under the influence of total catastrophes," Statistics & Probability Letters, Elsevier, vol. 20(3), pages 239-240, June.
    3. Shaler Stidham, 1977. "Cost Models for Stochastic Clearing Systems," Operations Research, INFORMS, vol. 25(1), pages 100-127, February.
    4. Stidham, Shaler, 1974. "Stochastic clearing systems," Stochastic Processes and their Applications, Elsevier, vol. 2(1), pages 85-113, January.
    5. Wei Sun & Pengfei Guo & Naishuo Tian, 2010. "Equilibrium threshold strategies in observable queueing systems with setup/closedown times," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 241-268, September.
    6. Economou, Antonis & Fakinos, Demetrios, 2003. "A continuous-time Markov chain under the influence of a regulating point process and applications in stochastic models with catastrophes," European Journal of Operational Research, Elsevier, vol. 149(3), pages 625-640, September.
    7. Pengfei Guo & Paul Zipkin, 2007. "Analysis and Comparison of Queues with Different Levels of Delay Information," Management Science, INFORMS, vol. 53(6), pages 962-970, June.
    8. Refael Hassin & Moshe Haviv, 1997. "Equilibrium Threshold Strategies: The Case of Queues with Priorities," Operations Research, INFORMS, vol. 45(6), pages 966-973, December.
    9. Epaminondas G. Kyriakidis & Theodosis D. Dimitrakos, 2005. "Computation of the Optimal Policy for the Control of a Compound Immigration Process through Total Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 97-118, March.
    10. Serfozo, Richard & Stidham, Shaler, 1978. "Semi-stationary clearing processes," Stochastic Processes and their Applications, Elsevier, vol. 6(2), pages 165-178, January.
    11. Edelson, Noel M & Hildebrand, David K, 1975. "Congestion Tolls for Poisson Queuing Processes," Econometrica, Econometric Society, vol. 43(1), pages 81-92, January.
    12. Economou, Antonis, 2003. "On the control of a compound immigration process through total catastrophes," European Journal of Operational Research, Elsevier, vol. 147(3), pages 522-529, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Czerny, Achim I. & Guo, Pengfei & Hassin, Refael, 2022. "Shall firms withhold exact waiting time information from their customers? A transport example," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 128-142.
    2. Zaiming Liu & Can Cao & Shan Gao, 2019. "Equilibrium Joining Strategies in the Geo / Geo K /1 Queueing System," Mathematics, MDPI, vol. 7(11), pages 1-16, November.
    3. Dimitrakopoulos, Y. & Burnetas, A.N., 2016. "Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control," European Journal of Operational Research, Elsevier, vol. 252(2), pages 477-486.
    4. Economou, Antonis & Logothetis, Dimitrios & Manou, Athanasia, 2022. "The value of reneging for strategic customers in queueing systems with server vacations/failures," European Journal of Operational Research, Elsevier, vol. 299(3), pages 960-976.
    5. Olga Bountali & Antonis Economou, 2019. "Strategic customer behavior in a two-stage batch processing system," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 3-29, October.
    6. Olga Bountali & Antonis Economou, 2019. "Equilibrium threshold joining strategies in partially observable batch service queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 231-253, June.
    7. Wang, Jinting & Zhang, Xuelu & Huang, Ping, 2017. "Strategic behavior and social optimization in a constant retrial queue with the N-policy," European Journal of Operational Research, Elsevier, vol. 256(3), pages 841-849.
    8. Yoav Kerner & Eliran Sherzer & Mor Ann Yanco, 2017. "On non-equilibria threshold strategies in ticket queues," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 419-431, August.
    9. Ayane Nakamura & Tuan Phung-Duc, 2023. "Equilibrium Analysis for Batch Service Queueing Systems with Strategic Choice of Batch Size," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    10. Yu, Senlin & Liu, Zaiming & Wu, Jinbiao, 2016. "Equilibrium strategies of the unobservable M/M/1 queue with balking and delayed repairs," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 56-65.
    11. Bu, Qihui & Sun, Yun & Chai, Xudong & Liu, Liwei, 2020. "Strategic behavior and social optimization in a clearing queueing system with N-policy and stochastic restarting scheme," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    12. Antonis Economou, 2022. "How much information should be given to the strategic customers of a queueing system?," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 421-423, April.
    13. Bountali, Olga & Economou, Antonis, 2017. "Equilibrium joining strategies in batch service queueing systems," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1142-1151.
    14. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    15. Olga Boudali & Antonis Economou, 2013. "The effect of catastrophes on the strategic customer behavior in queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(7), pages 571-587, October.
    16. Hassin, Refael & Haviv, Moshe & Oz, Binyamin, 2023. "Strategic behavior in queues with arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 217-224.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    2. Boudali, Olga & Economou, Antonis, 2012. "Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes," European Journal of Operational Research, Elsevier, vol. 218(3), pages 708-715.
    3. Lian, Zhaotong & Gu, Xinhua & Wu, Jinbiao, 2016. "A re-examination of experience service offering and regular service pricing under profit maximization," European Journal of Operational Research, Elsevier, vol. 254(3), pages 907-915.
    4. Canbolat, Pelin G., 2020. "Bounded rationality in clearing service systems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 614-626.
    5. Olga Boudali & Antonis Economou, 2013. "The effect of catastrophes on the strategic customer behavior in queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(7), pages 571-587, October.
    6. Olga Bountali & Antonis Economou, 2019. "Equilibrium threshold joining strategies in partially observable batch service queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 231-253, June.
    7. Opher Baron & Antonis Economou & Athanasia Manou, 2022. "Increasing social welfare with delays: Strategic customers in the M/G/1 orbit queue," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2907-2924, July.
    8. Bu, Qihui & Sun, Yun & Chai, Xudong & Liu, Liwei, 2020. "Strategic behavior and social optimization in a clearing queueing system with N-policy and stochastic restarting scheme," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    9. Gopinath Panda & Veena Goswami, 2022. "Equilibrium Joining Strategies of Positive Customers in a Markovian Queue with Negative Arrivals and Working Vacations," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1439-1466, September.
    10. Zhao, Chen & Wang, Zhongbin, 2023. "The impact of line-sitting on a two-server queueing system," European Journal of Operational Research, Elsevier, vol. 308(2), pages 782-800.
    11. Dimitrakopoulos, Y. & Burnetas, A.N., 2016. "Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control," European Journal of Operational Research, Elsevier, vol. 252(2), pages 477-486.
    12. Nitin Kumar & Umesh Chandra Gupta, 2022. "Markovian Arrival Process Subject to Renewal Generated Binomial Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2287-2312, December.
    13. Antonis Economou & Spyridoula Kanta, 2011. "Equilibrium customer strategies and social–profit maximization in the single‐server constant retrial queue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 107-122, March.
    14. Caner Canyakmaz & Tamer Boyaci, 2018. "Queueing systems with rationally inattentive customers," ESMT Research Working Papers ESMT-18-04_R1, ESMT European School of Management and Technology, revised 01 Oct 2020.
    15. Wang, Jinting & Zhang, Feng, 2013. "Strategic joining in M/M/1 retrial queues," European Journal of Operational Research, Elsevier, vol. 230(1), pages 76-87.
    16. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    17. Roei Engel & Refael Hassin, 2017. "Customer equilibrium in a single-server system with virtual and system queues," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 161-180, October.
    18. David Lingenbrink & Krishnamurthy Iyer, 2019. "Optimal Signaling Mechanisms in Unobservable Queues," Operations Research, INFORMS, vol. 67(5), pages 1397-1416, September.
    19. Simhon, Eran & Starobinski, David, 2018. "On the impact of information disclosure on advance reservations: A game-theoretic view," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1075-1088.
    20. F. P. Barbhuiya & Nitin Kumar & U. C. Gupta, 2019. "Batch Renewal Arrival Process Subject to Geometric Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 69-83, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:208:y:2013:i:1:p:489-514:10.1007/s10479-011-1025-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.