IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09859-5.html
   My bibliography  Save this article

Replacement Policy for Heterogeneous Items Subject to Gamma Degradation Processes

Author

Listed:
  • Ji Hwan Cha

    (Ewha Womans University)

  • Maxim Finkelstein

    (University of the Free State
    ITMO University)

  • Gregory Levitin

    (The Israel Electric Corporation)

Abstract

A hybrid preventive maintenance policy for heterogeneous degrading items is discussed. It combines the classical age-replacement strategy, when a system is replaced either on failure or at the predetermined age, with replacement of the system when degradation reaches the predetermined level at some intermediate time. Items come from two subpopulations with different reliability characteristics. Non-homogeneous gamma processes model degradation of an item from each subpopulation. We justify probabilistically the superiority of the proposed policy over that for homogeneous populations and over the policy without possibility of additional replacement. The corresponding long-run cost rate is derived for the suggested cost structure. Some detailed numerical illustrations are presented and relevant sensitivity analysis for the main parameters of the model is performed.

Suggested Citation

  • Ji Hwan Cha & Maxim Finkelstein & Gregory Levitin, 2022. "Replacement Policy for Heterogeneous Items Subject to Gamma Degradation Processes," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1323-1340, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09859-5
    DOI: 10.1007/s11009-021-09859-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09859-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09859-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Mimi & Gaudoin, Olivier & Xie, Min, 2015. "Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 245(2), pages 531-541.
    2. Xiujie Zhao & Olivier Gaudoin & Laurent Doyen & Min Xie, 2019. "Optimal inspection and replacement policy based on experimental degradation data with covariates," IISE Transactions, Taylor & Francis Journals, vol. 51(3), pages 322-336, March.
    3. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    4. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    5. Hongzhou Wang & Hoang Pham, 2006. "Reliability and Optimal Maintenance," Springer Series in Reliability Engineering, Springer, number 978-1-84628-325-3, December.
    6. Maxim Finkelstein & Ji Hwan Cha, 2013. "Burn-in for Heterogeneous Populations," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 261-312, Springer.
    7. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    8. Liao, Haitao & Elsayed, Elsayed A. & Chan, Ling-Yau, 2006. "Maintenance of continuously monitored degrading systems," European Journal of Operational Research, Elsevier, vol. 175(2), pages 821-835, December.
    9. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2017. "On preventive maintenance of systems with lifetimes dependent on a random shock process," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 90-97.
    10. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    11. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
    12. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    13. Maxim Finkelstein & Ji Hwan Cha, 2013. "Shocks as Burn-in," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 313-361, Springer.
    14. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    3. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process," European Journal of Operational Research, Elsevier, vol. 266(1), pages 122-134.
    4. Ji Hwan Cha & Maxim Finkelstein & Gregory Levitin, 2017. "Bivariate preventive maintenance for repairable systems subject to random shocks," Journal of Risk and Reliability, , vol. 231(6), pages 643-653, December.
    5. Maxim Finkelstein & Ji Hwan Cha & Amy Langston, 2023. "Termination versus operation extension for degrading systems," Journal of Risk and Reliability, , vol. 237(6), pages 1175-1185, December.
    6. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    7. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    8. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2021. "Optimal warranty policy with inspection for heterogeneous, stochastically degrading items," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1142-1152.
    11. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2017. "On preventive maintenance of systems with lifetimes dependent on a random shock process," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 90-97.
    12. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    13. Maxim Finkelstein & Ji Hwan Cha, 2021. "On degradation-based imperfect repair and induced generalized renewal processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1026-1045, December.
    14. Maxim Finkelstein & Mahmood Shafiee, 2017. "Preventive maintenance for systems with repairable minor failures," Journal of Risk and Reliability, , vol. 231(2), pages 101-108, April.
    15. Maxim Finkelstein & Gregory Levitin & Oleg A Stepanov, 2019. "On operation termination for degrading systems with two types of failures," Journal of Risk and Reliability, , vol. 233(3), pages 419-426, June.
    16. Cha, Ji Hwan, 2016. "New stochastic models for preventive maintenance and maintenance optimizationAuthor-Name: Lee, Hyunju," European Journal of Operational Research, Elsevier, vol. 255(1), pages 80-90.
    17. Ji Hwan Cha & Maxim Finkelstein, 2022. "A new warranty policy for heterogeneous items subject to monotone degradation processes," Journal of Risk and Reliability, , vol. 236(1), pages 55-65, February.
    18. Hamdan, K. & Tavangar, M. & Asadi, M., 2021. "Optimal preventive maintenance for repairable weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    19. Maxim Finkelstein & Ji Hwan Cha & Shyamal Ghosh, 2021. "Optimal inspection for missions with a possibility of abortion or switching to a lighter regime," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 722-740, October.
    20. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09859-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.