IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v94y2021i3d10.1007_s00186-021-00760-y.html
   My bibliography  Save this article

A stochastic Stackelberg differential reinsurance and investment game with delay in a defaultable market

Author

Listed:
  • Yanfei Bai

    (Shandong University of Finance and Economics)

  • Zhongbao Zhou

    (Hunan University)

  • Helu Xiao

    (Hunan Normal University)

  • Rui Gao

    (Shandong University of Finance and Economics)

  • Feimin Zhong

    (Hunan University)

Abstract

In this paper, we investigate a stochastic Stackelberg differential reinsurance and investment game problem with delay for a reinsurer and an insurer in a defaultable market, which consists of a risk-free asset, a risky asset and a defaultable bond. As the leader, the reinsurer can determine reinsurance premium price and investment strategy to maximize the expected exponential utility of its terminal wealth with delay. As the follower, the insurer can select reinsurance proportion and investment strategy to maximize the expected exponential utility of its terminal wealth with delay. By using the idea of backward induction and the dynamic programming approach, we solve the leader’s and follower’s optimization problems sequentially and derive the Stackelberg equilibrium strategy explicitly. Then, we provide the corresponding verification theorem. Finally, we present some numerical examples to illustrate the influence of model parameters on the equilibrium strategy and draw some economic interpretations from these results. We find that the pre-default value functions are higher than the post-default value functions and the influence of delay weight on equilibrium strategy depends on the length of delay time. Moreover, when the Stackelberg equilibrium is achieved in the interior case, the optimal reinsurance premium follows the variance premium principle and the influence of delay weight on the optimal reinsurance premium strategy is just opposite to that on other strategies.

Suggested Citation

  • Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2021. "A stochastic Stackelberg differential reinsurance and investment game with delay in a defaultable market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 341-381, December.
  • Handle: RePEc:spr:mathme:v:94:y:2021:i:3:d:10.1007_s00186-021-00760-y
    DOI: 10.1007/s00186-021-00760-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-021-00760-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-021-00760-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A, Chunxiang & Li, Zhongfei, 2015. "Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 181-196.
    2. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    3. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    4. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    5. Chen, Lv & Shen, Yang, 2019. "Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 120-137.
    6. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    7. Deng, Chao & Zeng, Xudong & Zhu, Huiming, 2018. "Non-zero-sum stochastic differential reinsurance and investment games with default risk," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1144-1158.
    8. Zhibin Liang & Junna Bi & Kam Chuen Yuen & Caibin Zhang, 2016. "Optimal mean–variance reinsurance and investment in a jump-diffusion financial market with common shock dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 155-181, August.
    9. Meng, Hui & Li, Shuanming & Jin, Zhuo, 2015. "A reinsurance game between two insurance companies with nonlinear risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 91-97.
    10. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    11. Guan, Guohui & Liang, Zongxia, 2016. "A stochastic Nash equilibrium portfolio game between two DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 237-244.
    12. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    13. Li, Danping & Rong, Ximin & Zhao, Hui & Yi, Bo, 2017. "Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 6-20.
    14. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    15. Gu, Mengdi & Yang, Yipeng & Li, Shoude & Zhang, Jingyi, 2010. "Constant elasticity of variance model for proportional reinsurance and investment strategies," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 580-587, June.
    16. Taksar, Michael & Zeng, Xudong, 2011. "Optimal non-proportional reinsurance control and stochastic differential games," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 64-71, January.
    17. Mou-Hsiung Chang & Tao Pang & Yipeng Yang, 2011. "A Stochastic Portfolio Optimization Model with Bounded Memory," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 604-619, November.
    18. Bai, Lihua & Guo, Junyi, 2008. "Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 968-975, June.
    19. Salvatore Federico, 2011. "A stochastic control problem with delay arising in a pension fund model," Finance and Stochastics, Springer, vol. 15(3), pages 421-459, September.
    20. Hu, Duni & Chen, Shou & Wang, Hailong, 2018. "Robust reinsurance contracts with uncertainty about jump risk," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1175-1188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yevhen Havrylenko & Maria Hinken & Rudi Zagst, 2022. "Risk sharing in equity-linked insurance products: Stackelberg equilibrium between an insurer and a reinsurer," Papers 2203.04053, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    2. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2019. "A hybrid stochastic differential reinsurance and investment game with bounded memory," Papers 1910.09834, arXiv.org.
    3. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    4. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    5. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    6. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
    7. A, Chunxiang & Li, Zhongfei, 2015. "Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 181-196.
    8. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    9. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    10. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2019. "Robust non-zero-sum investment and reinsurance game with default risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 115-132.
    11. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2021. "Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 168-184.
    12. Zilan Liu & Yijun Wang & Ya Huang & Jieming Zhou, 2022. "Optimal Time-Consistent Investment and Premium Control Strategies for Insurers with Constraint under the Heston Model," Mathematics, MDPI, vol. 10(7), pages 1-22, March.
    13. Ning Bin & Huainian Zhu & Chengke Zhang, 2023. "Stochastic Differential Games on Optimal Investment and Reinsurance Strategy with Delay Under the CEV Model," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-27, June.
    14. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    15. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    16. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    17. Kun Wu & Weixing Wu, 2016. "Optimal Controls for a Large Insurance Under a CEV Model: Based on the Legendre Transform-Dual Method," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 167-178, December.
    18. Qiang Zhang & Ping Chen, 2020. "Optimal Reinsurance and Investment Strategy for an Insurer in a Model with Delay and Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 777-801, June.
    19. Zhao, Hui & Shen, Yang & Zeng, Yan & Zhang, Wenjun, 2019. "Robust equilibrium excess-of-loss reinsurance and CDS investment strategies for a mean–variance insurer with ambiguity aversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 159-180.
    20. Lu Yang & Chengke Zhang & Huainian Zhu, 2022. "Robust Stochastic Stackelberg Differential Reinsurance and Investment Games for an Insurer and a Reinsurer with Delay," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 361-384, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:94:y:2021:i:3:d:10.1007_s00186-021-00760-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.