IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v66y2007i2p225-233.html
   My bibliography  Save this article

On the optimum capacity of capacity expansion problems

Author

Listed:
  • Chao Yang
  • Chunyan Hao
  • Jianzhong Zhang

Abstract

In this paper we consider problems of the following type: Let E = { e 1 , e 2 ,..., e n } be a finite set and $${\mathcal {F}}$$ be a family of subsets of E. For each element e i in E, c i is a given capacity and $${\mathcal {w}}$$ i is the cost of increasing capacity c i by one unit. It is assumed that we can expand the capacity of each element in E so that the capacity of family $${\mathcal {F}}$$ can be expanded to a level r. For each r, let f (r) be the efficient function with respect to the capacity r of family $${\mathcal {F}}$$ , and $${\phi(r)}$$ be the cost function for expanding the capacity of family $${\mathcal {F}}$$ to r. The goal is to find the optimum capacity value r * and the corresponding expansion strategy so that the pure efficency function $${f(r^*)-\phi(r^*)}$$ is the largest. Firstly, we show that this problem can be solved efficiently by figuring out a series of bottleneck capacity expansion problem defined by paper (Yang and Chen, Acta Math Sci 22:207–212, 2002) if f (r) is a piecewise linear function. Then we consider two variations and prove that these problems can be solved in polynomial time under some conditions. Finally the optimum capacity for maximum flow expansion problem is discussed. We tackle it by constructing an auxiliary network and transforming the problem into a maximum cost circulation problem on the auxiliary network. Copyright Springer-Verlag 2007

Suggested Citation

  • Chao Yang & Chunyan Hao & Jianzhong Zhang, 2007. "On the optimum capacity of capacity expansion problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 225-233, October.
  • Handle: RePEc:spr:mathme:v:66:y:2007:i:2:p:225-233
    DOI: 10.1007/s00186-007-0147-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-007-0147-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-007-0147-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jianzhong & Liu, Zhenhong & Ma, Zhongfan, 2000. "Some reverse location problems," European Journal of Operational Research, Elsevier, vol. 124(1), pages 77-88, July.
    2. James B. Orlin, 1993. "A Faster Strongly Polynomial Minimum Cost Flow Algorithm," Operations Research, INFORMS, vol. 41(2), pages 338-350, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    2. Dereniowski, Dariusz & Kubiak, Wiesław, 2020. "Shared processor scheduling of multiprocessor jobs," European Journal of Operational Research, Elsevier, vol. 282(2), pages 464-477.
    3. Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
    4. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    5. Jianzhong Zhang & Zhenhong Liu, 2002. "A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 207-227, June.
    6. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    7. Shoshana Anily, 1996. "The vehicle‐routing problem with delivery and back‐haul options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(3), pages 415-434, April.
    8. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
    9. Yosuke Hanawa & Yuya Higashikawa & Naoyuki Kamiyama & Naoki Katoh & Atsushi Takizawa, 2018. "The mixed evacuation problem," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1299-1314, November.
    10. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    11. Prabhjot Kaur & Anuj Sharma & Vanita Verma & Kalpana Dahiya, 2022. "An alternate approach to solve two-level hierarchical time minimization transportation problem," 4OR, Springer, vol. 20(1), pages 23-61, March.
    12. Adam N. Letchford, 2000. "Separating a Superclass of Comb Inequalities in Planar Graphs," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 443-454, August.
    13. László A. Végh, 2014. "Concave Generalized Flows with Applications to Market Equilibria," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 573-596, May.
    14. Ravindra K. Ahuja & Dorit S. Hochbaum, 2008. "TECHNICAL NOTE---Solving Linear Cost Dynamic Lot-Sizing Problems in O ( n log n ) Time," Operations Research, INFORMS, vol. 56(1), pages 255-261, February.
    15. Ons Sassi & Ammar Oulamara, 2017. "Electric vehicle scheduling and optimal charging problem: complexity, exact and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 519-535, January.
    16. Sharma, Anuj & Verma, Vanita & Kaur, Prabhjot & Dahiya, Kalpana, 2015. "An iterative algorithm for two level hierarchical time minimization transportation problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 700-707.
    17. P. Chardaire & A. Lisser, 2002. "Simplex and Interior Point Specialized Algorithms for Solving Nonoriented Multicommodity Flow Problems," Operations Research, INFORMS, vol. 50(2), pages 260-276, April.
    18. Yu Yokoi, 2017. "A Generalized Polymatroid Approach to Stable Matchings with Lower Quotas," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 238-255, January.
    19. Franco Rubio-López & Obidio Rubio & Rolando Urtecho Vidaurre, 2023. "The Inverse Weber Problem on the Plane and the Sphere," Mathematics, MDPI, vol. 11(24), pages 1-23, December.
    20. Bérczi, Kristóf & Mnich, Matthias & Vincze, Roland, 2023. "Approximations for many-visits multiple traveling salesman problems," Omega, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:66:y:2007:i:2:p:225-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.