IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i4d10.1007_s11027-018-9802-3.html
   My bibliography  Save this article

The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands

Author

Listed:
  • Sofyan Kurnianto

    (Oregon State University)

  • John Selker

    (Oregon State University)

  • J. Boone Kauffman

    (Oregon State University)

  • Daniel Murdiyarso

    (Center for International Forestry Research, Jl. CIFOR
    Bogor Agricultural University)

  • James T. Peterson

    (Oregon State University)

Abstract

Understanding the movement of water through peat is essential for effective conservation and management strategies for peatlands. Saturated hydraulic conductivity, Ks, describes water movement through the peat profile. However, the spatial variability of Ks in tropical peatlands and the effects of land conversion on peat characteristics are poorly understood. Utilizing the slug test method, we estimated hydraulic conductivity in tropical peatlands in West Kalimantan, Indonesia, at three depths (0.75, 3.5, and 5.5 m) across four different land-cover types (undrained forests, recently burned forests, early seral communities, and oil palm (Elaeis guineensis Jacq.) plantations). We found strong spatial autocorrelation among measurements collected at our 19 study sites and evaluated the relationship between hydraulic conductivity and land-cover types, peat properties, and depth of measurement with a hierarchical linear model. Hydraulic conductivity varied greatly (c. 0.001–13.9 m d−1). The best approximating model for estimating Ks contained depth, forest cover, a depth and forest cover interaction, and the von Post degree of decomposition (Ks ~ depth + forest + depth × forest + von Post). Parameter estimates indicated that Ks was greater in forested than non-forested sites and decreased with increasing depth and decomposition stage. There was no evidence that Ks differed among the non-forested sites or was related to other physical and chemical peat properties. Our results suggest that Ks should be measured directly in tropical peatlands rather than estimated as a function of peat properties. Additionally, the strong spatial dependence suggests that similar research designs should examine the sample data for spatial dependence and, if necessary, incorporate hierarchical models.

Suggested Citation

  • Sofyan Kurnianto & John Selker & J. Boone Kauffman & Daniel Murdiyarso & James T. Peterson, 2019. "The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 535-555, April.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:4:d:10.1007_s11027-018-9802-3
    DOI: 10.1007/s11027-018-9802-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9802-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9802-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    2. Susan E. Page & Florian Siegert & John O. Rieley & Hans-Dieter V. Boehm & Adi Jaya & Suwido Limin, 2002. "The amount of carbon released from peat and forest fires in Indonesia during 1997," Nature, Nature, vol. 420(6911), pages 61-65, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muh Taufik & Mudrik Haikal & Marliana Tri Widyastuti & Chusnul Arif & I. Putu Santikayasa, 2023. "The Impact of Rewetting Peatland on Fire Hazard in Riau, Indonesia," Sustainability, MDPI, vol. 15(3), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    3. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    4. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    6. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    9. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    11. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    12. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    13. Szefer Elena & Graham Jinko & Lu Donghuan & Beg Mirza Faisal & Nathoo Farouk, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 349-365, December.
    14. Julien Collet & Samantha C Patrick & Henri Weimerskirch, 2017. "A comparative analysis of the behavioral response to fishing boats in two albatross species," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1337-1347.
    15. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    16. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    17. Katrijn Delaruelle, 2023. "Migration-related inequalities in loneliness across age groups: a cross-national comparative study in Europe," European Journal of Ageing, Springer, vol. 20(1), pages 1-17, December.
    18. Christos C Ioannou & Luis Arrochela Braga Carvalho & Chessy Budleigh & Graeme D Ruxton, 2023. "Virtual prey with Lévy motion are preferentially attacked by predatory fish," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(4), pages 695-699.
    19. Vonneilich, Nico & Lüdecke, Daniel & von dem Knesebeck, Olaf, 2020. "Educational inequalities in self-rated health and social relationships – analyses based on the European Social Survey 2002-2016," Social Science & Medicine, Elsevier, vol. 267(C).
    20. Kimmo Eriksson & Irina Vartanova & Petra Ornstein & Pontus Strimling, 2021. "The common-is-moral association is stronger among less religious people," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-8, December.
    21. Sarah V Bentley & Katharine H Greenaway & S Alexander Haslam, 2017. "An online paradigm for exploring the self-reference effect," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:4:d:10.1007_s11027-018-9802-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.