IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v18y2013i4p449-470.html
   My bibliography  Save this article

Modeling mitigation strategies for toxic cyanobacteria blooms in shallow and eutrophic Lake Kasumigaura, Japan

Author

Listed:
  • Md. Islam
  • Daisuke Kitazawa
  • Thomas Hamill
  • Ho-Dong Park

Abstract

This paper explores mitigation scenarios for toxic cyanobacteria blooms in Lake Kasumigaura is located about 60–90 km northeast of Tokyo, in the southeast of Ibaraki Prefecture, Japan. Dominant species of cyanobacteria (Microcystis aeruginosa, Microcystis viridis and Microcystis ichthyoblabe) produce highly potent toxins as (Microcystin-(Leucine + Arginine, MC-LR), Microcystin-(Arginine + Arginine, MC-RR) and Microcystin-(Tyrosine + Arginine, MC-YR) in the Lake. Toxin production is generally the result of two major factors-natural processes and human interferences. Both factors have an extreme influence on the generation of cyanobacteria toxins within lake ecosystems. To address these factors, we propose two concepts for mitigation. The first concept is intended for examining the natural process of toxin production behavior within the lake and the second concept is used for evaluating inflow of wastes and nutrients from human activities that form toxins. Our research aims to combine both strategies to mitigate impacts of toxins, by examining trends of cyanobacteria nutrient sources, buoyancy regulations that influence bloom formation, and the environmental conditions that spur blooms. This study proposes a simple IMPACT (Integrating Mitigation Policies for Aquatic Cyanobacteria Toxin) model for diminution strategies of harmful algal blooms and their toxins. A mixed-methods approach is employed, nested within the Environmental Systems Analysis (ESA) tools e.g. scenario analysis and stakeholder analysis. The quality of the lake is assessed through a combination of observation and field study analysis. The findings suggest that successful mitigation of cyanobacteria toxins is highly dependent on multi-functional, multi-stakeholder involvement, and relevant intergovernmental policy. Without integrating approaches among different stakeholders, diverse socioeconomic activists, local-national policymakers and effective policy measures, prevention of cyanobacteria toxin production within lakes becomes extremely complex and difficult. The proposed IMPACT model could be a decision framework for identifying suitable policies that mitigate cyanobacteria impacts. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Md. Islam & Daisuke Kitazawa & Thomas Hamill & Ho-Dong Park, 2013. "Modeling mitigation strategies for toxic cyanobacteria blooms in shallow and eutrophic Lake Kasumigaura, Japan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(4), pages 449-470, April.
  • Handle: RePEc:spr:masfgc:v:18:y:2013:i:4:p:449-470
    DOI: 10.1007/s11027-012-9369-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-012-9369-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-012-9369-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Guozheng & Xu, Zongxue, 2011. "Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake," Ecological Modelling, Elsevier, vol. 222(6), pages 1245-1252.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Jaeyoung & Seo, Dongil & Jones, John R., 2022. "Harmful algal bloom dynamics in a tidal river influenced by hydraulic control structures," Ecological Modelling, Elsevier, vol. 467(C).
    2. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    3. Islam, Md. Nazrul & Kitazawa, Daisuke & Kokuryo, Naoki & Tabeta, Shigeru & Honma, Takamitsu & Komatsu, Nobuyuki, 2012. "Numerical modeling on transition of dominant algae in Lake Kitaura, Japan," Ecological Modelling, Elsevier, vol. 242(C), pages 146-163.
    4. Md Jahangir Alam & Dushmanta Dutta, 2016. "A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5455-5478, November.
    5. Lee, Ingyu & Hwang, Hyundong & Lee, Jungwoo & Yu, Nayoung & Yun, Jinhuck & Kim, Hyunook, 2017. "Modeling approach to evaluation of environmental impacts on river water quality: A case study with Galing River, Kuantan, Pahang, Malaysia," Ecological Modelling, Elsevier, vol. 353(C), pages 167-173.
    6. Liu, Haidong & Zheng, Zhongquan C. & Young, Bryan & Harris, Ted D., 2019. "Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir," Ecological Modelling, Elsevier, vol. 398(C), pages 20-34.
    7. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    8. Zhao, Xiaodong & Zhang, Hongjian & Tao, Xiaolei, 2013. "Predicting the short-time-scale variability of chlorophyll a in the Elbe River using a Lagrangian-based multi-criterion analog model," Ecological Modelling, Elsevier, vol. 250(C), pages 279-286.
    9. Chen, Bokun & Yang, Siyu & Cao, Qi & Qian, Yu, 2020. "Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse?," Energy Policy, Elsevier, vol. 137(C).
    10. Jiang, Long & Li, Yiping & Zhao, Xu & Tillotson, Martin R. & Wang, Wencai & Zhang, Shuangshuang & Sarpong, Linda & Asmaa, Qhtan & Pan, Baozhu, 2018. "Parameter uncertainty and sensitivity analysis of water quality model in Lake Taihu, China," Ecological Modelling, Elsevier, vol. 375(C), pages 1-12.
    11. Luo, Xi & Li, Xuyong, 2018. "Using the EFDC model to evaluate the risks of eutrophication in an urban constructed pond from different water supply strategies," Ecological Modelling, Elsevier, vol. 372(C), pages 1-11.
    12. Li-kun, Yang & Sen, Peng & Xin-hua, Zhao & Xia, Li, 2017. "Development of a two-dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis," Ecological Modelling, Elsevier, vol. 345(C), pages 63-74.
    13. Gula Tang & Yunqiang Zhu & Guozheng Wu & Jing Li & Zhao-Liang Li & Jiulin Sun, 2016. "Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China," IJERPH, MDPI, vol. 13(4), pages 1-15, April.
    14. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:18:y:2013:i:4:p:449-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.