IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v31y2025i2d10.1007_s10985-025-09648-z.html
   My bibliography  Save this article

Lifetime analysis with monotonic degradation: a boosted first hitting time model based on a homogeneous gamma process

Author

Listed:
  • Clara Bertinelli Salucci

    (University of Oslo)

  • Azzeddine Bakdi

    (Corvus Energy)

  • Ingrid Kristine Glad

    (University of Oslo)

  • Bo Henry Lindqvist

    (Norwegian University of Science and Technology)

  • Erik Vanem

    (University of Oslo
    DNV Group Technology and Research)

  • Riccardo De Bin

    (University of Oslo)

Abstract

In the context of time-to-event analysis, First hitting time methods consider the event occurrence as the ending point of some evolving process. The characteristics of the process are of great relevance for the analysis, which makes this class of models interesting and particularly suitable for applications where something about the degradation path is known. In cases where the degradation can only worsen, a monotonic process is the most suitable choice. This paper proposes a boosting algorithm for first hitting time models based on an underlying homogeneous gamma process to account for the monotonicity of the degradation trend. The predictive power and versatility of the algorithm are shown with real data examples from both engineering and biomedical applications, as well as with simulated examples.

Suggested Citation

  • Clara Bertinelli Salucci & Azzeddine Bakdi & Ingrid Kristine Glad & Bo Henry Lindqvist & Erik Vanem & Riccardo De Bin, 2025. "Lifetime analysis with monotonic degradation: a boosted first hitting time model based on a homogeneous gamma process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(2), pages 300-339, April.
  • Handle: RePEc:spr:lifeda:v:31:y:2025:i:2:d:10.1007_s10985-025-09648-z
    DOI: 10.1007/s10985-025-09648-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-025-09648-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-025-09648-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    2. Hofner, Benjamin & Mayr, Andreas & Schmid, Matthias, 2016. "gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i01).
    3. Yee, Thomas W., 2010. "The VGAM Package for Categorical Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i10).
    4. Mogensen, Ulla B. & Ishwaran, Hemant & Gerds, Thomas A., 2012. "Evaluating Random Forests for Survival Analysis Using Prediction Error Curves," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i11).
    5. Wang, Xiaofei & Wang, Bing Xing & Hong, Yili & Jiang, Pei Hua, 2021. "Degradation data analysis based on gamma process with random effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1200-1208.
    6. Beate Sildnes & Bo Henry Lindqvist, 2018. "Modeling of semi-competing risks by means of first passage times of a stochastic process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 153-175, January.
    7. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
    2. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    3. Nicolai Hans & Nadja Klein & Florian Faschingbauer & Michael Schneider & Andreas Mayr, 2023. "Boosting distributional copula regression," Biometrics, The International Biometric Society, vol. 79(3), pages 2298-2310, September.
    4. Maike Hohberg & Peter Pütz & Thomas Kneib, 2020. "Treatment effects beyond the mean using distributional regression: Methods and guidance," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.
    5. Amon, Julian & Hornik, Kurt, 2022. "Is it all bafflegab? – Linguistic and meta characteristics of research articles in prestigious economics journals," Journal of Informetrics, Elsevier, vol. 16(2).
    6. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    7. Jessup, Sébastien & Mailhot, Mélina & Pigeon, Mathieu, 2025. "Uncertainty in heteroscedastic Bayesian model averaging," Insurance: Mathematics and Economics, Elsevier, vol. 121(C), pages 63-78.
    8. Boyao Zhang & Tobias Hepp & Sonja Greven & Elisabeth Bergherr, 2022. "Adaptive step-length selection in gradient boosting for Gaussian location and scale models," Computational Statistics, Springer, vol. 37(5), pages 2295-2332, November.
    9. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    10. Xiaosheng, Si & Li, Huiqin & Zhang, Zhengxin & Li, Naipeng, 2024. "A Wiener-process-inspired semi-stochastic filtering approach for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    11. Lisa Schlosser & Torsten Hothorn & Reto Stauffer & Achim Zeileis, 2018. "Distributional regression forests for probabilistic precipitation forecasting in complex terrain," Working Papers 2018-08, Faculty of Economics and Statistics, Universität Innsbruck, revised Nov 2018.
    12. Yee, Thomas W., 2014. "Reduced-rank vector generalized linear models with two linear predictors," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 889-902.
    13. Adam, Timo & Mayr, Andreas & Kneib, Thomas, 2022. "Gradient boosting in Markov-switching generalized additive models for location, scale, and shape," Econometrics and Statistics, Elsevier, vol. 22(C), pages 3-16.
    14. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    15. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    16. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    17. Nathaniel Geiger & Bryan McLaughlin & John Velez, 2021. "Not all boomers: temporal orientation explains inter- and intra-cultural variability in the link between age and climate engagement," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    18. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    19. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    20. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:31:y:2025:i:2:d:10.1007_s10985-025-09648-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.