IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v38y2025i2d10.1007_s10959-025-01415-y.html
   My bibliography  Save this article

A Note on the Convergence of the Extreme Eigenvalues of a Large-Dimensional Sample Covariance Matrix

Author

Listed:
  • Shizhe Hong

    (Shanghai University of Finance and Economics)

  • Haiyan Song

    (Northeast Normal University)

  • Jiang Hu

    (Northeast Normal University)

  • Zhidong Bai

    (Northeast Normal University
    Xi’an Jiaotong University)

Abstract

In this study, we explore both weak and strong convergence properties of extreme eigenvalues in a large-dimensional sample covariance matrix, specifically in cases where the data matrix comprises independent, though not identically distributed, elements. Our findings reveal that, provided there exists a uniform boundedness condition on the $$(2+\delta )$$ ( 2 + δ ) -th moment for some $$\delta >0$$ δ > 0 and the proper Lindeberg condition is satisfied, the established convergence results in Yin, Bai and Krishnaiah, (Probab. Theory Relat. Fields 78:509–521, 1988) and Bai, and Yin (Ann. Probab. 21:1275–1294, 1993) remain applicable.

Suggested Citation

  • Shizhe Hong & Haiyan Song & Jiang Hu & Zhidong Bai, 2025. "A Note on the Convergence of the Extreme Eigenvalues of a Large-Dimensional Sample Covariance Matrix," Journal of Theoretical Probability, Springer, vol. 38(2), pages 1-16, June.
  • Handle: RePEc:spr:jotpro:v:38:y:2025:i:2:d:10.1007_s10959-025-01415-y
    DOI: 10.1007/s10959-025-01415-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-025-01415-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-025-01415-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z. D. & Silverstein, Jack W. & Yin, Y. Q., 1988. "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 26(2), pages 166-168, August.
    2. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    3. Jonsson, Dag, 1982. "Some limit theorems for the eigenvalues of a sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 1-38, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Zhidong & Silverstein, Jack W., 2022. "A tribute to P.R. Krishnaiah," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    3. Chen, Jiaqi & Zhang, Yangchun & Li, Weiming & Tian, Boping, 2018. "A supplement on CLT for LSS under a large dimensional generalized spiked covariance model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 57-65.
    4. Onatski, A., 2018. "Asymptotics of the principal components estimator of large factor models with weak factors and i.i.d. Gaussian noise," Cambridge Working Papers in Economics 1808, Faculty of Economics, University of Cambridge.
    5. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    6. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    7. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    8. Heiny, Johannes & Mikosch, Thomas, 2017. "Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices with general growth rates: The iid case," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2179-2207.
    9. Birke, Melanie & Dette, Holger, 2005. "A note on testing the covariance matrix for large dimension," Statistics & Probability Letters, Elsevier, vol. 74(3), pages 281-289, October.
    10. Kamil Jurczak, 2015. "A Universal Expectation Bound on Empirical Projections of Deformed Random Matrices," Journal of Theoretical Probability, Springer, vol. 28(2), pages 650-666, June.
    11. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    12. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 35/14, Institute for Fiscal Studies.
    13. Martin, Ian W.R. & Nagel, Stefan, 2022. "Market efficiency in the age of big data," Journal of Financial Economics, Elsevier, vol. 145(1), pages 154-177.
    14. Bender, Martin, 2008. "Global fluctuations in general [beta] Dyson's Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1022-1042, June.
    15. Friesen, Olga & Löwe, Matthias & Stolz, Michael, 2013. "Gaussian fluctuations for sample covariance matrices with dependent data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 270-287.
    16. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 49/13, Institute for Fiscal Studies.
    17. Hugo Freeman & Martin Weidner, 2021. "Low-rank approximations of nonseparable panel models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 40-77.
    18. Greenaway-McGrevy, Ryan & Han, Chirok & Sul, Donggyu, 2012. "Asymptotic distribution of factor augmented estimators for panel regression," Journal of Econometrics, Elsevier, vol. 169(1), pages 48-53.
    19. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    20. Jan Nagel, 2021. "A Functional CLT for Partial Traces of Random Matrices," Journal of Theoretical Probability, Springer, vol. 34(2), pages 953-974, June.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:38:y:2025:i:2:d:10.1007_s10959-025-01415-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.