IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i1d10.1007_s10959-023-01238-9.html
   My bibliography  Save this article

Volatility Estimation of Gaussian Ornstein–Uhlenbeck Processes of the Second Kind

Author

Listed:
  • Rachid Belfadli

    (Cadi Ayyad University)

  • Khalifa Es-Sebaiy

    (Kuwait University)

  • Fatima-Ezzahra Farah

    (Cadi Ayyad University)

Abstract

In this paper, under suitable assumptions on the Gaussian process $$G=\lbrace G_t,\,t\ge 0\rbrace $$ G = { G t , t ≥ 0 } , we establish results on uniform convergence in probability and in law stably for the realized power variation of the Riemann–Stieljes integral $$Z_t=\int _0^t u_s \text {d}Y_{s,G}^{(1)}$$ Z t = ∫ 0 t u s d Y s , G ( 1 ) with respect to $${Y_{t,G}^{(1)}}=\int _0^t \text {e}^{-s} \text {d}G_{a(s)}$$ Y t , G ( 1 ) = ∫ 0 t e - s d G a ( s ) , where u is a process of finite q-variation with $$q

Suggested Citation

  • Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2024. "Volatility Estimation of Gaussian Ornstein–Uhlenbeck Processes of the Second Kind," Journal of Theoretical Probability, Springer, vol. 37(1), pages 860-876, March.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:1:d:10.1007_s10959-023-01238-9
    DOI: 10.1007/s10959-023-01238-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01238-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01238-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    2. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    2. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    3. Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2023. "Volatility Estimation of Gaussian Ornstein–Uhlenbeck Processes of the Second Kind," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-17, March.
    4. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    5. Liu, Guangying & Zhang, Xinsheng, 2011. "Power variation of fractional integral processes with jumps," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 962-972, August.
    6. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    7. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    8. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    9. Katerina Papagiannouli, 2022. "A Lepskiĭ-type stopping rule for the covariance estimation of multi-dimensional Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 505-535, October.
    10. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    11. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    12. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    13. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    14. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
    15. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    16. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    17. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    18. Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
    19. Almut E. D. Veraart & Luitgard A. M. Veraart, 2013. "Risk premia in energy markets," CREATES Research Papers 2013-02, Department of Economics and Business Economics, Aarhus University.
    20. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    21. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:1:d:10.1007_s10959-023-01238-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.