IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v36y2023i4d10.1007_s10959-023-01256-7.html
   My bibliography  Save this article

On the Ergodicity of Certain Markov Chains in Random Environments

Author

Listed:
  • Balázs Gerencsér

    (Alfréd Rényi Institute of Mathematics and Eötvös Loránd University)

  • Miklós Rásonyi

    (Alfréd Rényi Institute of Mathematics and Eötvös Loránd University)

Abstract

We study the ergodic behaviour of a discrete-time process X which is a Markov chain in a stationary random environment. The laws of $$X_t$$ X t are shown to converge to a limiting law in (weighted) total variation distance as $$t\rightarrow \infty $$ t → ∞ . Convergence speed is estimated, and an ergodic theorem is established for functionals of X. Our hypotheses on X combine the standard “drift” and “small set” conditions for geometrically ergodic Markov chains with conditions on the growth rate of a certain “maximal process” of the random environment. We are able to cover a wide range of models that have heretofore been intractable. In particular, our results are pertinent to difference equations modulated by a stationary (Gaussian) process. Such equations arise in applications such as discretized stochastic volatility models of mathematical finance.

Suggested Citation

  • Balázs Gerencsér & Miklós Rásonyi, 2023. "On the Ergodicity of Certain Markov Chains in Random Environments," Journal of Theoretical Probability, Springer, vol. 36(4), pages 2093-2125, December.
  • Handle: RePEc:spr:jotpro:v:36:y:2023:i:4:d:10.1007_s10959-023-01256-7
    DOI: 10.1007/s10959-023-01256-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01256-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01256-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    2. Lovas, Attila & Rásonyi, Miklós, 2021. "Markov chains in random environment with applications in queuing theory and machine learning," Stochastic Processes and their Applications, Elsevier, vol. 137(C), pages 294-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    2. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    3. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    4. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    5. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    6. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    7. Aït-Youcef, Camille & Joëts, Marc, 2024. "The role of index traders in the financialization of commodity markets: A behavioral finance approach," Energy Economics, Elsevier, vol. 136(C).
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    9. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    10. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    11. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    12. Eduardo Abi Jaber & Donatien Hainaut & Edouard Motte, 2025. "The Volterra Stein-Stein model with stochastic interest rates," Papers 2503.01716, arXiv.org, revised Jul 2025.
    13. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    14. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    15. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    16. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    17. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    18. Damian Jelito & Marcin Pitera, 2018. "New fat-tail normality test based on conditional second moments with applications to finance," Papers 1811.05464, arXiv.org, revised Apr 2020.
    19. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    20. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:36:y:2023:i:4:d:10.1007_s10959-023-01256-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.