IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v207y2025i2d10.1007_s10957-025-02752-y.html
   My bibliography  Save this article

A Nonsmooth Frank–Wolfe Algorithm Through a Dual Cutting-Plane Approach

Author

Listed:
  • Guilherme Mazanti

    (Université Paris-Saclay, CNRS, CentraleSupélec, Inria, Laboratoire des signaux et systèmes
    Fédération de Mathématiques de CentraleSupélec)

  • Thibault Moquet

    (Université Paris-Saclay, CNRS, CentraleSupélec, Inria, Laboratoire des signaux et systèmes
    Fédération de Mathématiques de CentraleSupélec)

  • Laurent Pfeiffer

    (Université Paris-Saclay, CNRS, CentraleSupélec, Inria, Laboratoire des signaux et systèmes
    Fédération de Mathématiques de CentraleSupélec)

Abstract

An extension of the Frank–Wolfe Algorithm (FWA), also known as Conditional Gradient algorithm, is proposed. In its standard form, the FWA allows to solve constrained optimization problems involving $$\beta $$ β -smooth cost functions, calling at each iteration a Linear Minimization Oracle. More specifically, the oracle solves a problem obtained by linearization of the original cost function. The algorithm designed and investigated in this article, named Dualized Level-Set (DLS) algorithm, extends the FWA and allows to address a class of nonsmooth costs, involving in particular support functions. The key idea behind the construction of the DLS method is a general interpretation of the FWA as a cutting-plane algorithm, from the dual point of view. The DLS algorithm essentially results from a dualization of a specific cutting-plane algorithm, based on projections on some level sets. The DLS algorithm generates a sequence of primal-dual candidates, and we prove that the corresponding primal-dual gap converges with a rate of $$O(1/\sqrt{t})$$ O ( 1 / t ) .

Suggested Citation

  • Guilherme Mazanti & Thibault Moquet & Laurent Pfeiffer, 2025. "A Nonsmooth Frank–Wolfe Algorithm Through a Dual Cutting-Plane Approach," Journal of Optimization Theory and Applications, Springer, vol. 207(2), pages 1-49, November.
  • Handle: RePEc:spr:joptap:v:207:y:2025:i:2:d:10.1007_s10957-025-02752-y
    DOI: 10.1007/s10957-025-02752-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02752-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02752-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    2. Lemaréchal, C. & Nemirovskii, A. & Nesterov, Y., 1995. "New variants of bundle methods," LIDAM Reprints CORE 1166, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Butyn, Emerson & Karas, Elizabeth W. & de Oliveira, Welington, 2022. "A derivative-free trust-region algorithm with copula-based models for probability maximization problems," European Journal of Operational Research, Elsevier, vol. 298(1), pages 59-75.
    2. Benjamin Grimmer, 2023. "General Hölder Smooth Convergence Rates Follow from Specialized Rates Assuming Growth Bounds," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 51-70, April.
    3. Valentina Morandi, 2024. "Bridging the user equilibrium and the system optimum in static traffic assignment: a review," 4OR, Springer, vol. 22(1), pages 89-119, March.
    4. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    5. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    6. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    7. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    8. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    9. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    10. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    11. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    12. Jeffrey Christiansen & Brian Dandurand & Andrew Eberhard & Fabricio Oliveira, 2023. "A study of progressive hedging for stochastic integer programming," Computational Optimization and Applications, Springer, vol. 86(3), pages 989-1034, December.
    13. Stephanie Caro & Filip Thiele, 2025. "Asymptotic Analysis for a Class of Quasiconvex Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 207(3), pages 1-24, December.
    14. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    15. James Chok & Geoffrey M. Vasil, 2023. "Convex optimization over a probability simplex," Papers 2305.09046, arXiv.org, revised Apr 2025.
    16. A. de Palma & Y. Nesterov, 2001. "Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives," THEMA Working Papers 2001-19, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    18. D. J. White, 1993. "A parametric‐based heuristic program for the quadratic assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 553-568, June.
    19. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    20. Yunmei Chen & Xiaojing Ye & Wei Zhang, 2020. "Acceleration techniques for level bundle methods in weakly smooth convex constrained optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 411-432, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:207:y:2025:i:2:d:10.1007_s10957-025-02752-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.