IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i3d10.1007_s10957-024-02597-x.html
   My bibliography  Save this article

A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems

Author

Listed:
  • Gregorio M. Sempere

    (MINES Paris-PSL, CMA – Centre de Mathématiques Appliquées)

  • Welington Oliveira

    (MINES Paris-PSL, CMA – Centre de Mathématiques Appliquées)

  • Johannes O. Royset

    (University of Southern California)

Abstract

This work proposes an implementable proximal-type method for a broad class of optimization problems involving nonsmooth and nonconvex objective and constraint functions. In contrast to existing methods that rely on an ad hoc model approximating the nonconvex functions, our approach can work with a nonconvex model constructed by the pointwise minimum of finitely many convex models. The latter can be chosen with reasonable flexibility to better fit the underlying functions’ structure. We provide a unifying framework and analysis covering several subclasses of composite optimization problems and show that our method computes points satisfying certain necessary optimality conditions, which we will call model criticality. Depending on the specific model being used, our general concept of criticality boils down to standard necessary optimality conditions. Numerical experiments on some stochastic reliability-based optimization problems illustrate the practical performance of the method.

Suggested Citation

  • Gregorio M. Sempere & Welington Oliveira & Johannes O. Royset, 2025. "A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-30, March.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02597-x
    DOI: 10.1007/s10957-024-02597-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02597-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02597-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julia L. Higle & Suvrajeet Sen, 1992. "On the Convergence of Algorithms with Implications for Stochastic and Nondifferentiable Optimization," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 112-131, February.
    2. Hoai Le Thi & Tao Pham Dinh & Huynh Ngai, 2012. "Exact penalty and error bounds in DC programming," Journal of Global Optimization, Springer, vol. 52(3), pages 509-535, March.
    3. Outi Montonen & Kaisa Joki, 2018. "Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints," Journal of Global Optimization, Springer, vol. 72(3), pages 403-429, November.
    4. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    5. Claudia Gotzes & Holger Heitsch & René Henrion & Rüdiger Schultz, 2016. "On the quantification of nomination feasibility in stationary gas networks with random load," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 427-457, October.
    6. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    7. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    8. Jong-Shi Pang & Meisam Razaviyayn & Alberth Alvarado, 2017. "Computing B-Stationary Points of Nonsmooth DC Programs," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 95-118, January.
    9. J. S. Pang, 2007. "Partially B-Regular Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 687-699, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    2. Hoai An Le Thi & Tao Pham Dinh, 2024. "Open issues and recent advances in DC programming and DCA," Journal of Global Optimization, Springer, vol. 88(3), pages 533-590, March.
    3. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
    4. Welington Oliveira, 2020. "Sequential Difference-of-Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 936-959, September.
    5. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    6. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    7. Hoai An Thi & Thi Minh Tam Nguyen & Tao Pham Dinh, 2023. "On solving difference of convex functions programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 163-197, September.
    8. Hongbo Dong & Min Tao, 2021. "On the Linear Convergence to Weak/Standard d-Stationary Points of DCA-Based Algorithms for Structured Nonsmooth DC Programming," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 190-220, April.
    9. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    10. Hadi Abbaszadehpeivasti & Etienne Klerk & Moslem Zamani, 2024. "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 475-496, July.
    11. Liping Pang & Xiaoliang Wang & Fanyun Meng, 2023. "A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems," Journal of Global Optimization, Springer, vol. 86(3), pages 589-620, July.
    12. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    13. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    14. M. V. Dolgopolik, 2023. "DC semidefinite programming and cone constrained DC optimization II: local search methods," Computational Optimization and Applications, Springer, vol. 85(3), pages 993-1031, July.
    15. Jong-Shi Pang & Meisam Razaviyayn & Alberth Alvarado, 2017. "Computing B-Stationary Points of Nonsmooth DC Programs," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 95-118, January.
    16. Pietro D’Alessandro & Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2024. "The Descent–Ascent Algorithm for DC Programming," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 657-671, March.
    17. Byun, Ji-Eun & de Oliveira, Welington & Royset, Johannes O., 2023. "S-BORM: Reliability-based optimization of general systems using buffered optimization and reliability method," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. F. Mashkoorzadeh & N. Movahedian & S. Nobakhtian, 2022. "The DTC (difference of tangentially convex functions) programming: optimality conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 270-295, July.
    19. Le Thi, H.A. & Pham Dinh, T. & Le, H.M. & Vo, X.T., 2015. "DC approximation approaches for sparse optimization," European Journal of Operational Research, Elsevier, vol. 244(1), pages 26-46.
    20. Tao Pham Dinh & Van Ngai Huynh & Hoai An Le Thi & Vinh Thanh Ho, 2022. "Alternating DC algorithm for partial DC programming problems," Journal of Global Optimization, Springer, vol. 82(4), pages 897-928, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02597-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.