IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v198y2023i2d10.1007_s10957-023-02248-7.html
   My bibliography  Save this article

Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems

Author

Listed:
  • Asmae Tajani

    (Moulay Ismail University, Faculty of Sciences)

  • Fatima-Zahrae El Alaoui

    (Moulay Ismail University, Faculty of Sciences)

Abstract

The main objective of this work is to steer a semilinear time-fractional diffusion control system involving Riemann–Liouville fractional derivative to a desired state in a part of the boundary of the evolution domain. For that, we use fixed point technique, semigroup theory and fractional calculus under some proposed assumptions in the linear part of the system and the nonlinear term. At the end, we provide some numerical simulations which lead to successful figures, in order to guarantee the efficiency of the proposed approach.

Suggested Citation

  • Asmae Tajani & Fatima-Zahrae El Alaoui, 2023. "Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 767-780, August.
  • Handle: RePEc:spr:joptap:v:198:y:2023:i:2:d:10.1007_s10957-023-02248-7
    DOI: 10.1007/s10957-023-02248-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02248-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02248-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamdy M. Ahmed & Mahmoud M. El-Borai & Hassan M. El-Owaidy & Ahmed S. Ghanem, 2019. "Existence Solution and Controllability of Sobolev Type Delay Nonlinear Fractional Integro-Differential System," Mathematics, MDPI, vol. 7(1), pages 1-14, January.
    2. Ricardo Enrique Gutiérrez & João Maurício Rosário & José Tenreiro Machado, 2010. "Fractional Order Calculus: Basic Concepts and Engineering Applications," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-19, May.
    3. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Asmae Tajani & Fatima Zahrae El Alaoui & Ali Boutoulout, 2020. "Regional Controllability of Riemann–Liouville Time-Fractional Semilinear Evolution Equations," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-7, November.
    5. Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
    6. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Fiuzy, Mohammad & Shamaghdari, Saeed, 2023. "Robust H∞-PID control Stability of fractional-order linear systems with Polytopic and two-norm bounded uncertainties subject to input saturation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 550-581.
    3. Thitiporn Linitda & Kulandhaivel Karthikeyan & Palanisamy Raja Sekar & Thanin Sitthiwirattham, 2023. "Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    4. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R. & Zhou, Yong, 2020. "A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Velmurugan Subramanian & Ghada AlNemer & Ahmed M. Elshenhab, 2022. "Existence of Hilfer Fractional Stochastic Differential Equations with Nonlocal Conditions and Delay via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    7. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Yazid Alhojilan & Hamdy M. Ahmed, 2023. "New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    10. Deep, Amar & Deepmala, & Hazarika, Bipan, 2021. "An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    11. Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    12. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Kalimuthu, K. & Mohan, M. & Chokkalingam, R. & Nisar, Kottakkaran Sooppy, 2022. "Results on neutral differential equation of sobolev type with nonlocal conditions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    15. Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Pan Mu & Lei Wang & Chongyang Liu, 2020. "A Control Parameterization Method to Solve the Fractional-Order Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 234-247, October.
    17. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    18. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    20. Wang, Yujie & Li, Mince & Chen, Zonghai, 2020. "Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:198:y:2023:i:2:d:10.1007_s10957-023-02248-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.