IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4069-d1247440.html
   My bibliography  Save this article

Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay

Author

Listed:
  • Daliang Zhao

    (School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China)

Abstract

This article is mainly concerned with the approximate controllability for some semi-linear fractional integro-differential impulsive evolution equations of order 1 < α < 2 with delay in Banach spaces. Firstly, we study the existence of the P C -mild solution for our objective system via some characteristic solution operators related to the Mainardi’s Wright function. Secondly, by using the spatial decomposition techniques and the range condition of control operator B , some new results of approximate controllability for the fractional delay system with impulsive effects are obtained. The results cover and extend some relevant outcomes in many related papers. The main tools utilized in this paper are the theory of cosine families, fixed-point strategy, and the Grönwall-Bellman inequality. At last, an example is given to demonstrate the effectiveness of our research results.

Suggested Citation

  • Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4069-:d:1247440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong Zhou, 2022. "Infinite Interval Problems for Fractional Evolution Equations," Mathematics, MDPI, vol. 10(6), pages 1-13, March.
    2. Ahmed Salem & Kholoud N. Alharbi & Hashim M. Alshehri, 2022. "Fractional Evolution Equations with Infinite Time Delay in Abstract Phase Space," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    3. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R. & Zhou, Yong, 2020. "A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Lu, Liang & Liu, Zhenhai, 2015. "Existence and controllability results for stochastic fractional evolution hemivariational inequalities," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1164-1176.
    6. Mahmudov, N.I., 2020. "Finite-approximate controllability of semilinear fractional stochastic integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Boudjerida, Assia & Seba, Djamila, 2021. "Approximate controllability of hybrid Hilfer fractional differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2021. "A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1003-1026.
    5. Bienvenido Barraza Martínez & Jonathan González Ospino & Rogelio Grau Acuña & Jairo Hernández Monzón, 2022. "Parameter–Elliptic Fourier Multipliers Systems and Generation of Analytic and C ∞ Semigroups," Mathematics, MDPI, vol. 10(5), pages 1-19, February.
    6. Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Cao, Yueju & Sun, Jitao, 2017. "Controllability of measure driven evolution systems with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 119-126.
    8. Gautam, Pooja & Shukla, Anurag, 2023. "Stochastic controllability of semilinear fractional control differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Li, Xuemei & Liu, Xinge & Tang, Meilan, 2021. "Approximate controllability of fractional evolution inclusions with damping," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    10. Ahmed Salem & Lamya Almaghamsi, 2023. "Solvability of Sequential Fractional Differential Equation at Resonance," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    11. Lu, Liang & Liu, Zhenhai & Bin, Maojun, 2016. "Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 201-212.
    12. Ahmed Salem & Hunida Malaikah & Eid Sayed Kamel, 2023. "An Infinite System of Fractional Sturm–Liouville Operator with Measure of Noncompactness Technique in Banach Space," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    13. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    14. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Ahmed Salem & Rawia Babusail, 2022. "Finite-Time Stability in Nonhomogeneous Delay Differential Equations of Fractional Hilfer Type," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    16. Thitiporn Linitda & Kulandhaivel Karthikeyan & Palanisamy Raja Sekar & Thanin Sitthiwirattham, 2023. "Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    17. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R. & Zhou, Yong, 2020. "A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Asmae Tajani & Fatima-Zahrae El Alaoui, 2023. "Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 767-780, August.
    19. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    20. Sumit Arora & Manil T. Mohan & Jaydev Dabas, 2023. "Finite-Approximate Controllability of Impulsive Fractional Functional Evolution Equations of Order $$1," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 855-890, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4069-:d:1247440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.