IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v195y2022i2d10.1007_s10957-022-02115-x.html
   My bibliography  Save this article

On Local Nonglobal Minimum of Trust-Region Subproblem and Extension

Author

Listed:
  • Jiulin Wang

    (Fudan University)

  • Mengmeng Song

    (Beihang University)

  • Yong Xia

    (Beihang University)

Abstract

The local nonglobal minimizer of the trust-region subproblem, if it exists, is shown to have the second smallest objective function value among all KKT points. This new property is extended to the p-regularized subproblem. As a corollary, we show for the first time that finding the local nonglobal minimizer of the Nesterov–Polyak subproblem corresponds to a generalized eigenvalue problem.

Suggested Citation

  • Jiulin Wang & Mengmeng Song & Yong Xia, 2022. "On Local Nonglobal Minimum of Trust-Region Subproblem and Extension," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 707-722, November.
  • Handle: RePEc:spr:joptap:v:195:y:2022:i:2:d:10.1007_s10957-022-02115-x
    DOI: 10.1007/s10957-022-02115-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02115-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02115-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Maziar Salahi & Akram Taati & Henry Wolkowicz, 2017. "Local nonglobal minima for solving large-scale extended trust-region subproblems," Computational Optimization and Applications, Springer, vol. 66(2), pages 223-244, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    2. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    3. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.
    4. Weiwei Kong & Jefferson G. Melo & Renato D. C. Monteiro, 2020. "An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 305-346, June.
    5. Chuan He & Heng Huang & Zhaosong Lu, 2024. "A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 843-894, December.
    6. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    7. Temadher A. Almaadeed & Saeid Ansary Karbasy & Maziar Salahi & Abdelouahed Hamdi, 2022. "On Indefinite Quadratic Optimization over the Intersection of Balls and Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 246-264, July.
    8. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    9. Yamakawa, Yuya & Yamashita, Nobuo, 2025. "Convergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problems," Applied Mathematics and Computation, Elsevier, vol. 491(C).
    10. Jianyu Xiao & Haibin Zhang & Huan Gao, 2025. "A Chebyshev–Halley Method with Gradient Regularization and an Improved Convergence Rate," Mathematics, MDPI, vol. 13(8), pages 1-17, April.
    11. Kenji Ueda & Nobuo Yamashita, 2014. "A regularized Newton method without line search for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 59(1), pages 321-351, October.
    12. Liaoyuan Zeng & Ting Kei Pong, 2022. "$$\rho$$ ρ -regularization subproblems: strong duality and an eigensolver-based algorithm," Computational Optimization and Applications, Springer, vol. 81(2), pages 337-368, March.
    13. J. M. Martínez & L. T. Santos, 2022. "On large-scale unconstrained optimization and arbitrary regularization," Computational Optimization and Applications, Springer, vol. 81(1), pages 1-30, January.
    14. A. L. Custódio & R. Garmanjani & M. Raydan, 2024. "Derivative-free separable quadratic modeling and cubic regularization for unconstrained optimization," 4OR, Springer, vol. 22(1), pages 121-144, March.
    15. Yuning Jiang & Dimitris Kouzoupis & Haoyu Yin & Moritz Diehl & Boris Houska, 2021. "Decentralized Optimization Over Tree Graphs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 384-407, May.
    16. Nesterov, Yurii, 2022. "Quartic Regularity," LIDAM Discussion Papers CORE 2022001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.
    18. Yuquan Chen & Yunkang Sun & Bing Wang, 2023. "Improving the Performance of Optimization Algorithms Using the Adaptive Fixed-Time Scheme and Reset Scheme," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    19. Hong Zhu & Yunhai Xiao, 2024. "A hybrid inexact regularized Newton and negative curvature method," Computational Optimization and Applications, Springer, vol. 88(3), pages 849-870, July.
    20. Yurii Nesterov, 2021. "Superfast Second-Order Methods for Unconstrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 1-30, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:195:y:2022:i:2:d:10.1007_s10957-022-02115-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.