IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v190y2021i2d10.1007_s10957-021-01894-z.html
   My bibliography  Save this article

Combinatorial Optimization Algorithms for detecting Collapse Mechanisms of Concrete Slabs

Author

Listed:
  • Michele De Filippo

    (Shenzhen University)

  • Jun Shang Kuang

    (The Hong Kong University of Science and Technology, Clear Water Bay)

Abstract

Nowadays, large part of the technical knowledge associated with collapses of slabs is based on past failures of bridges, floors, flat roofs and balconies. Collapse mechanisms tend to often differ from each other due to unique features which make it difficult to derive a generalised technique that can predict the right mechanism. This paper proposes a novel algorithm for tackling the problem of detection of collapse mechanisms, which is part of a pseudo-lower bound method for assessing concrete slabs in bridges and buildings. The problem is generalised to a combinatorial one, and the solution is based on a set of well-known combinatorial optimization algorithms. The proposed approach enables an identification of the domain of existence of yield-lines potentially leading to collapse. The output provides an estimation of a hampered domain of feasible yield-lines through which engineers can quickly identify zones of the slab and directions in which yield-lines leading to collapse are more likely to occur. Numerical applications of the algorithm are presented herein.

Suggested Citation

  • Michele De Filippo & Jun Shang Kuang, 2021. "Combinatorial Optimization Algorithms for detecting Collapse Mechanisms of Concrete Slabs," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 540-564, August.
  • Handle: RePEc:spr:joptap:v:190:y:2021:i:2:d:10.1007_s10957-021-01894-z
    DOI: 10.1007/s10957-021-01894-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01894-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01894-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
    2. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    3. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    4. Luss, Hanan & Wong, Richard T., 2005. "Graceful reassignment of excessively long communications paths in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 395-415, January.
    5. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    6. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    7. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    8. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    9. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    10. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    11. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. T. Gomes & J. Craveirinha & L. Jorge, 2010. "An effective algorithm for obtaining the whole set of minimal cost pairs of disjoint paths with dual arc costs," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 394-414, April.
    13. Zhou, Bo & Eskandarian, Azim, 2006. "A Non-Deterministic Path Generation Algorithm for Traffic Networks," 47th Annual Transportation Research Forum, New York, New York, March 23-25, 2006 208047, Transportation Research Forum.
    14. Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
    15. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    16. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    17. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    18. Noruzoliaee, Mohamadhossein & Zou, Bo, 2022. "One-to-many matching and section-based formulation of autonomous ridesharing equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 72-100.
    19. Azar Sadeghnejad-Barkousaraie & Rajan Batta & Moises Sudit, 2017. "Convoy movement problem: a civilian perspective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 14-33, January.
    20. Mohamad Khattar Awad & Mohammed El‐Shafei & Tassos Dimitriou & Yousef Rafique & Mohammed Baidas & Ammar Alhusaini, 2017. "Power‐efficient routing for SDN with discrete link rates and size‐limited flow tables: A tree‐based particle swarm optimization approach," International Journal of Network Management, John Wiley & Sons, vol. 27(5), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:190:y:2021:i:2:d:10.1007_s10957-021-01894-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.