IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v187y2020i2d10.1007_s10957-020-01759-x.html
   My bibliography  Save this article

A Frank–Wolfe-Type Theorem for Cubic Programs and Solvability for Quadratic Variational Inequalities

Author

Listed:
  • Tran Nghi

    (Hanoi Pedagogical University 2)

  • Nguyen Nang Tam

    (Hanoi Pedagogical University 2)

Abstract

In this paper, we present a Frank–Wolfe-type theorem for nonconvex cubic programming problems. This result is a direct extension of the previous ones by Andronov et al. (Izvestija Akadem. Nauk SSSR, Tekhnicheskaja Kibernetika 4:194–197, 1982) and Flores-Bazán et al. (Math. Program. 145:263–290, 2014). Under suitable conditions, we characterize the compactness of the solution set of cubic programming problems. Sufficient conditions for the existence of solutions of quadratic variational inequalities are proposed. We also provide several numerical examples, which not only illustrate the obtained results but also show that the existing results cannot apply.

Suggested Citation

  • Tran Nghi & Nguyen Nang Tam, 2020. "A Frank–Wolfe-Type Theorem for Cubic Programs and Solvability for Quadratic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 448-468, November.
  • Handle: RePEc:spr:joptap:v:187:y:2020:i:2:d:10.1007_s10957-020-01759-x
    DOI: 10.1007/s10957-020-01759-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01759-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01759-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong Wang & Zheng-Hai Huang & Liqun Qi, 2018. "Global Uniqueness and Solvability of Tensor Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 137-152, April.
    2. B. Curtis Eaves, 1971. "On Quadratic Programming," Management Science, INFORMS, vol. 17(11), pages 698-711, July.
    3. Luo, Z-Q. & Zhang, S., 1997. "On the extensions of the Frank-Worfe theorem," Econometric Institute Research Papers EI 9748/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Z.H. Huang, 2003. "Generalization of an Existence Theorem for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 118(3), pages 567-585, September.
    5. Yang Xu & Weizhe Gu & He Huang, 2019. "Solvability of Two Classes of Tensor Complementarity Problems," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, March.
    6. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    7. John Cotrina & Fernanda Raupp & Wilfredo Sosa, 2015. "Semi-continuous quadratic optimization: existence conditions and duality scheme," Journal of Global Optimization, Springer, vol. 63(2), pages 281-295, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    2. Tong-tong Shang & Jing Yang & Guo-ji Tang, 2022. "Generalized Polynomial Complementarity Problems over a Polyhedral Cone," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 443-483, February.
    3. E. Alper Yıldırım, 2022. "An alternative perspective on copositive and convex relaxations of nonconvex quadratic programs," Journal of Global Optimization, Springer, vol. 82(1), pages 1-20, January.
    4. Nguyen Ngoc Luan & Jen-Chih Yao, 2019. "Generalized polyhedral convex optimization problems," Journal of Global Optimization, Springer, vol. 75(3), pages 789-811, November.
    5. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    6. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    7. Musshoff, Oliver & Hirschauer, Norbert, 2004. "Optimierung unter Unsicherheit mit Hilfe stochastischer Simulation und Genetischer Algorithmen – dargestellt anhand der Optimierung des Produktionsprogramms eines Brandenburger Marktfruchtbetriebes," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 53(07), pages 1-16.
    8. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    10. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    11. Erasmus, Barend & van Jaarsveld, Albert & van Zyl, Johan & Vink, Nick, 2000. "The effects of climate change on the farm sector in the Western Cape," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 39(4), pages 1-15, December.
    12. Tiến-Sơn Phạm, 2019. "Optimality Conditions for Minimizers at Infinity in Polynomial Programming," Management Science, INFORMS, vol. 44(4), pages 1381-1395, November.
    13. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    14. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    15. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    16. Luo, Z-Q. & Zhang, S., 1997. "On the extensions of the Frank-Worfe theorem," Econometric Institute Research Papers EI 9748/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Damian Clarke & Daniel Paila~nir & Susan Athey & Guido Imbens, 2023. "Synthetic Difference In Differences Estimation," Papers 2301.11859, arXiv.org, revised Feb 2023.
    18. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    19. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    20. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:187:y:2020:i:2:d:10.1007_s10957-020-01759-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.