IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v184y2020i3d10.1007_s10957-019-01616-6.html
   My bibliography  Save this article

Inertial Projection-Type Methods for Solving Quasi-Variational Inequalities in Real Hilbert Spaces

Author

Listed:
  • Yekini Shehu

    (Zhejiang Normal University
    Institute of Science and Technology (IST))

  • Aviv Gibali

    (ORT Braude College
    University of Haifa)

  • Simone Sagratella

    (Sapienza University of Rome)

Abstract

In this paper, we introduce an inertial projection-type method with different updating strategies for solving quasi-variational inequalities with strongly monotone and Lipschitz continuous operators in real Hilbert spaces. Under standard assumptions, we establish different strong convergence results for the proposed algorithm. Primary numerical experiments demonstrate the potential applicability of our scheme compared with some related methods in the literature.

Suggested Citation

  • Yekini Shehu & Aviv Gibali & Simone Sagratella, 2020. "Inertial Projection-Type Methods for Solving Quasi-Variational Inequalities in Real Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 877-894, March.
  • Handle: RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01616-6
    DOI: 10.1007/s10957-019-01616-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01616-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01616-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boţ, Radu Ioan & Csetnek, Ernö Robert & Hendrich, Christopher, 2015. "Inertial Douglas–Rachford splitting for monotone inclusion problems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 472-487.
    2. Vittorio Latorre & Simone Sagratella, 2016. "A canonical duality approach for the solution of affine quasi-variational inequalities," Journal of Global Optimization, Springer, vol. 64(3), pages 433-449, March.
    3. NESTEROV, Yurii & SCRIMALI, Laura, 2011. "Solving strongly monotone variational and quasi-variational inequalities," LIDAM Reprints CORE 2357, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
    5. Didier Aussel & Simone Sagratella, 2017. "Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 3-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lampariello, Lorenzo & Neumann, Christoph & Ricci, Jacopo M. & Sagratella, Simone & Stein, Oliver, 2021. "Equilibrium selection for multi-portfolio optimization," European Journal of Operational Research, Elsevier, vol. 295(1), pages 363-373.
    2. Bing Tan & Xiaolong Qin & Jen-Chih Yao, 2022. "Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems," Journal of Global Optimization, Springer, vol. 82(3), pages 523-557, March.
    3. Shipra Singh & Aviv Gibali & Simeon Reich, 2021. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications," Mathematics, MDPI, vol. 9(14), pages 1-23, July.
    4. Lu-Chuan Ceng & Ching-Feng Wen & Yeong-Cheng Liou & Jen-Chih Yao, 2022. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lampariello, Lorenzo & Neumann, Christoph & Ricci, Jacopo M. & Sagratella, Simone & Stein, Oliver, 2021. "Equilibrium selection for multi-portfolio optimization," European Journal of Operational Research, Elsevier, vol. 295(1), pages 363-373.
    2. Tommaso Colombo & Simone Sagratella, 2020. "Distributed algorithms for convex problems with linear coupling constraints," Journal of Global Optimization, Springer, vol. 77(1), pages 53-73, May.
    3. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    4. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    5. Pin-Bo Chen & Gui-Hua Lin & Xide Zhu & Fusheng Bai, 2021. "Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets," Journal of Global Optimization, Springer, vol. 80(3), pages 635-659, July.
    6. Didier Aussel & Simone Sagratella, 2017. "Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 3-18, February.
    7. Lorenzo Lampariello & Christoph Neumann & Jacopo M. Ricci & Simone Sagratella & Oliver Stein, 2020. "An explicit Tikhonov algorithm for nested variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 335-350, November.
    8. Christian Kanzow & Daniel Steck, 2018. "Augmented Lagrangian and exact penalty methods for quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 69(3), pages 801-824, April.
    9. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    10. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    11. Didier Aussel & Parin Chaipunya, 2024. "Variational and Quasi-Variational Inequalities Under Local Reproducibility: Solution Concept and Applications," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1531-1563, November.
    12. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    13. Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
    14. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    15. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    16. Juan Yin & Qingna Li, 2019. "A semismooth Newton method for support vector classification and regression," Computational Optimization and Applications, Springer, vol. 73(2), pages 477-508, June.
    17. Francesco Cesarone & Lorenzo Lampariello & Davide Merolla & Jacopo Maria Ricci & Simone Sagratella & Valerio Giuseppe Sasso, 2023. "A bilevel approach to ESG multi-portfolio selection," Computational Management Science, Springer, vol. 20(1), pages 1-23, December.
    18. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    19. Rahman Khorramfar & Osman Ozaltin & Reha Uzsoy & Karl Kempf, 2024. "Coordinating Resource Allocation during Product Transitions Using a Multifollower Bilevel Programming Model," Papers 2401.17402, arXiv.org.
    20. Xue Gao & Xingju Cai & Deren Han, 2020. "A Gauss–Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 76(4), pages 863-887, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01616-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.