IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v175y2017i1d10.1007_s10957-017-1149-5.html
   My bibliography  Save this article

Mean-Field Pontryagin Maximum Principle

Author

Listed:
  • Mattia Bongini

    (Technische Universität München)

  • Massimo Fornasier

    (Technische Universität München)

  • Francesco Rossi

    (Aix Marseille Université)

  • Francesco Solombrino

    (Università di Napoli “Federico II”)

Abstract

We derive a maximum principle for optimal control problems with constraints given by the coupling of a system of ordinary differential equations and a partial differential equation of Vlasov type with smooth interaction kernel. Such problems arise naturally as Gamma-limits of optimal control problems constrained by ordinary differential equations, modeling, for instance, external interventions on crowd dynamics by means of leaders. We obtain these first-order optimality conditions in the form of Hamiltonian flows in the Wasserstein space of probability measures with forward–backward boundary conditions with respect to the first and second marginals, respectively. In particular, we recover the equations and their solutions by means of a constructive procedure, which can be seen as the mean-field limit of the Pontryagin Maximum Principle applied to the optimal control problem for the discretized density, under a suitable scaling of the adjoint variables.

Suggested Citation

  • Mattia Bongini & Massimo Fornasier & Francesco Rossi & Francesco Solombrino, 2017. "Mean-Field Pontryagin Maximum Principle," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 1-38, October.
  • Handle: RePEc:spr:joptap:v:175:y:2017:i:1:d:10.1007_s10957-017-1149-5
    DOI: 10.1007/s10957-017-1149-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1149-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1149-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Georg Stadler, 2009. "Elliptic optimal control problems with L 1 -control cost and applications for the placement of control devices," Computational Optimization and Applications, Springer, vol. 44(2), pages 159-181, November.
    3. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    4. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linjie Zhang & Xizhe Wang & Tao He & Zhongmei Han, 2022. "A Data-Driven Optimized Mechanism for Improving Online Collaborative Learning: Taking Cognitive Load into Account," IJERPH, MDPI, vol. 19(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    2. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    3. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    4. Ma, Wanjing & Li, Li & Wang, Yinhai, 2016. "A driving force model for non-strict priority crossing behaviors of right-turn driversAuthor-Name: Lin, Dianchao," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 230-244.
    5. Zhu, Yu & Chen, Tao & Ding, Ning & Chraibi, Mohcine & Fan, Wei-Cheng, 2021. "Follow people or signs? A novel way-finding method based on experiments and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    6. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    7. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    8. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    9. Gao, Jin & He, Jun & Gong, Jinghai, 2020. "A simplified method to provide evacuation guidance in a multi-exit building under emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    11. Li, Xiao-Yang & Lin, Zhi-Yang & Zhang, Peng & Zhang, Xiao-Ning, 2023. "Reconstruction of density and cost potential field of Eikonal equation: Applications to discrete pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    12. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    13. Sun, Yutong & Liu, Hong, 2021. "Crowd evacuation simulation method combining the density field and social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    14. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    15. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    16. Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    17. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.
    18. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.
    19. Wu, Pei-Yang & Guo, Ren-Yong, 2021. "Simulation of pedestrian flows through queues: Effect of interaction and intersecting angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    20. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:175:y:2017:i:1:d:10.1007_s10957-017-1149-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.