IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v170y2016i2d10.1007_s10957-016-0890-5.html
   My bibliography  Save this article

Pooling Problems with Polynomial-Time Algorithms

Author

Listed:
  • Dag Haugland

    (University of Bergen)

  • Eligius M. T. Hendrix

    (Universidad de Málaga
    Wageningen University)

Abstract

The computational challenge offered by many traditional network flow models is modest, and large-scale instances can be solved fast. When the composition of the flow is part of the model, the required computation time may increase substantially. This is in particular true for the pooling problem, where the relative content of certain flow components is restricted. Flow entering the network at the source nodes has a given composition, whereas the composition in other nodes is determined by the composition of entering flows. At the network terminals, the flow composition is subject to restrictions referred to as quality constraints. The pooling problem is known to be strongly NP-hard, even if the network has only one pool, but is solvable in polynomial time if also the number of terminals or the number of quality parameters (flow components) is bounded. The problem is also NP-hard if there are only two sources and terminals and only one quality parameter. Two related questions have been left open in the literature so far. For the single-pool version, it has not been known whether the problem is solvable in polynomial time if the number of sources is bounded. For the version with a single quality parameter and two sources and terminals, the question whether a pseudo-polynomial algorithm exists has been open. This paper gives positive answers to both questions.

Suggested Citation

  • Dag Haugland & Eligius M. T. Hendrix, 2016. "Pooling Problems with Polynomial-Time Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 591-615, August.
  • Handle: RePEc:spr:joptap:v:170:y:2016:i:2:d:10.1007_s10957-016-0890-5
    DOI: 10.1007/s10957-016-0890-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0890-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0890-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammed Alfaki & Dag Haugland, 2013. "Strong formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 897-916, July.
    2. George B. Dantzig, 1990. "The Diet Problem," Interfaces, INFORMS, vol. 20(4), pages 43-47, August.
    3. Charles Audet & Jack Brimberg & Pierre Hansen & Sébastien Le Digabel & Nenad Mladenovi'{c}, 2004. "Pooling Problem: Alternate Formulations and Solution Methods," Management Science, INFORMS, vol. 50(6), pages 761-776, June.
    4. George J. Stigler, 1945. "The Cost of Subsistence," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(2), pages 303-314.
    5. Josef Kallrath, 2005. "Solving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 339-373, November.
    6. Thomas E. Baker & Leon S. Lasdon, 1985. "Successive Linear Programming at Exxon," Management Science, INFORMS, vol. 31(3), pages 264-274, March.
    7. Santanu S. Dey & Akshay Gupte, 2015. "Analysis of MILP Techniques for the Pooling Problem," Operations Research, INFORMS, vol. 63(2), pages 412-427, April.
    8. Calvin W. DeWitt & Leon S. Lasdon & Allan D. Waren & Donald A. Brenner & Simon A. Melhem, 1989. "OMEGA: An Improved Gasoline Blending System for Texaco," Interfaces, INFORMS, vol. 19(1), pages 85-101, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Di & Liu, Xiang-dong & Yan, Xiang-bin & Peng, Rui & Li, Gang, 2019. "Equilibrium analysis of bitcoin block withholding attack: A generalized model," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 318-328.
    2. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2017. "A polynomially solvable case of the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 621-630, March.
    3. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    4. Eisenberg, Julia & Krühner, Paul, 2018. "The impact of negative interest rates on optimal capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 1-10.
    5. Santanu S. Dey & Burak Kocuk & Asteroide Santana, 2020. "Convexifications of rank-one-based substructures in QCQPs and applications to the pooling problem," Journal of Global Optimization, Springer, vol. 77(2), pages 227-272, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    2. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2017. "A polynomially solvable case of the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 621-630, March.
    3. Mohammed Alfaki & Dag Haugland, 2014. "A cost minimization heuristic for the pooling problem," Annals of Operations Research, Springer, vol. 222(1), pages 73-87, November.
    4. Akshay Gupte & Shabbir Ahmed & Santanu S. Dey & Myun Seok Cheon, 2017. "Relaxations and discretizations for the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 631-669, March.
    5. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2016. "New multi-commodity flow formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 66(4), pages 669-710, December.
    6. Santanu S. Dey & Akshay Gupte, 2015. "Analysis of MILP Techniques for the Pooling Problem," Operations Research, INFORMS, vol. 63(2), pages 412-427, April.
    7. Susan Garner Garille & Saul I. Gass, 2001. "Stigler's Diet Problem Revisited," Operations Research, INFORMS, vol. 49(1), pages 1-13, February.
    8. Paul Bello & Pedro Gallardo & Lorena Pradenas & Jacques A Ferland & Victor Parada, 2020. "Best compromise nutritional menus for childhood obesity," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    9. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    10. Fischetti, Matteo & Monaci, Michele, 2020. "A branch-and-cut algorithm for Mixed-Integer Bilinear Programming," European Journal of Operational Research, Elsevier, vol. 282(2), pages 506-514.
    11. F Dubeau, 2019. "Behavior Related to Taxation System: Example of Bi-Criteria Linear Program for Animal Diet Formulation," Annals of Social Sciences & Management studies, Juniper Publishers Inc., vol. 3(3), pages 60-65, April.
    12. Ted Kutz & Mark Davis & Robert Creek & Nick Kenaston & Craig Stenstrom & Margery Connor, 2014. "Optimizing Chevron’s Refineries," Interfaces, INFORMS, vol. 44(1), pages 39-54, February.
    13. Ahmadreza Marandi & Joachim Dahl & Etienne Klerk, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Annals of Operations Research, Springer, vol. 265(1), pages 67-92, June.
    14. François Dubeau & Pierre-Olivier Julien & Candido Pomar, 2011. "Formulating diets for growing pigs: economic and environmental considerations," Annals of Operations Research, Springer, vol. 190(1), pages 239-269, October.
    15. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    16. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    17. Draman, Murat & Kuban Altinel, I & Bajgoric, Nijaz & Tamer Unal, Ali & Birgoren, Burak, 2002. "A clone-based graphical modeler and mathematical model generator for optimal production planning in process industries," European Journal of Operational Research, Elsevier, vol. 137(3), pages 483-496, March.
    18. Lars Hellemo & Asgeir Tomasgard, 2016. "A generalized global optimization formulation of the pooling problem with processing facilities and composite quality constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 409-444, July.
    19. John R. Birge, 2022. "George Bernard Dantzig," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 1909-1911, May.
    20. Marandi, Ahmadreza & Dahl, Joachim & de Klerk, Etienne, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Other publications TiSEM 981f1428-4d42-4d3f-9a7a-7, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:170:y:2016:i:2:d:10.1007_s10957-016-0890-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.