IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v19y1989i1p85-101.html
   My bibliography  Save this article

OMEGA: An Improved Gasoline Blending System for Texaco

Author

Listed:
  • Calvin W. DeWitt

    (Computer and Information Systems Department, Eastern New Mexico University, Portales, New Mexico 88130)

  • Leon S. Lasdon

    (Management Science and Information Systems Department, University of Texas, Austin, Texas 78712)

  • Allan D. Waren

    (Computer and Information Science Department, Cleveland State University, Cleveland, Ohio 44115)

  • Donald A. Brenner

    (Refining Department, Texaco Inc., Houston, Texas 77052)

  • Simon A. Melhem

    (Information Technology Department, Texaco Inc., Houston, Texas 77237)

Abstract

Gasoline blending is a critical refinery operation. In 1980, Texaco began developing an improved, optimization based, decision support system for planning and scheduling its blending operations. The system, OMEGA, is implemented on personal computers and on larger computer systems. It relies on refinery data bases and on-line data acquisition and exploits detailed nonlinear models of gasoline attributes. Texaco uses OMEGA in all seven US refineries and its Canadian and Welsh refineries. Its benefits include an estimated $30 million annually, better quality control, improved planning and marketing information, and the ability to conduct a variety of what-if studies.

Suggested Citation

  • Calvin W. DeWitt & Leon S. Lasdon & Allan D. Waren & Donald A. Brenner & Simon A. Melhem, 1989. "OMEGA: An Improved Gasoline Blending System for Texaco," Interfaces, INFORMS, vol. 19(1), pages 85-101, February.
  • Handle: RePEc:inm:orinte:v:19:y:1989:i:1:p:85-101
    DOI: 10.1287/inte.19.1.85
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.19.1.85
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.19.1.85?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    2. Yifu Chen & Christos T. Maravelias, 2020. "Preprocessing algorithm and tightening constraints for multiperiod blend scheduling: cost minimization," Journal of Global Optimization, Springer, vol. 77(3), pages 603-625, July.
    3. Dimitri J. Papageorgiou & Alejandro Toriello & George L. Nemhauser & Martin W. P. Savelsbergh, 2012. "Fixed-Charge Transportation with Product Blending," Transportation Science, INFORMS, vol. 46(2), pages 281-295, May.
    4. Yifu Chen & Christos T. Maravelias, 2022. "Variable Bound Tightening and Valid Constraints for Multiperiod Blending," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2073-2090, July.
    5. Mohammed Alfaki & Dag Haugland, 2014. "A cost minimization heuristic for the pooling problem," Annals of Operations Research, Springer, vol. 222(1), pages 73-87, November.
    6. Charles Audet & Jack Brimberg & Pierre Hansen & SĂ©bastien Le Digabel & Nenad Mladenovi'{c}, 2004. "Pooling Problem: Alternate Formulations and Solution Methods," Management Science, INFORMS, vol. 50(6), pages 761-776, June.
    7. Dag Haugland & Eligius M. T. Hendrix, 2016. "Pooling Problems with Polynomial-Time Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 591-615, August.
    8. Chang, Jiyoun C. & Graves, Stephen C. & Kirchain, Randolph E. & Olivetti, Elsa A., 2019. "Integrated planning for design and production in two-stage recycling operations," European Journal of Operational Research, Elsevier, vol. 273(2), pages 535-547.
    9. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2017. "A polynomially solvable case of the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 621-630, March.
    10. Gothe-Lundgren, Maud & T. Lundgren, Jan & A. Persson, Jan, 2002. "An optimization model for refinery production scheduling," International Journal of Production Economics, Elsevier, vol. 78(3), pages 255-270, August.
    11. Draman, Murat & Kuban Altinel, I & Bajgoric, Nijaz & Tamer Unal, Ali & Birgoren, Burak, 2002. "A clone-based graphical modeler and mathematical model generator for optimal production planning in process industries," European Journal of Operational Research, Elsevier, vol. 137(3), pages 483-496, March.
    12. Ted Kutz & Mark Davis & Robert Creek & Nick Kenaston & Craig Stenstrom & Margery Connor, 2014. "Optimizing Chevron’s Refineries," Interfaces, INFORMS, vol. 44(1), pages 39-54, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:19:y:1989:i:1:p:85-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.