IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v168y2016i1d10.1007_s10957-015-0767-z.html
   My bibliography  Save this article

The Orienteering Problem with Time Windows Applied to Robotic Melon Harvesting

Author

Listed:
  • Moshe Mann

    (Technion)

  • Boaz Zion

    (Agricultural Research Organization - the Volcani Center)

  • Dror Rubinstein

    (Technion)

  • Rafi Linker

    (Technion)

  • Itzhak Shmulevich

    (Technion)

Abstract

The goal of a melon harvesting robot is to maximize the number of melons it harvests given a progressive speed. Selecting the sequence of melons that yields this maximum is an example of the orienteering problem with time windows. We present a dynamic programming-based algorithm that yields a strictly optimal solution to this problem. In contrast to similar methods, this algorithm utilizes the unique properties of the robotic harvesting task, such as uniform gain per vertex and time windows, to expand domination criteria and quicken the optimal path selection process. We prove that the complexity of this algorithm is linearithmic in the number of melons and can be implemented online if there is a bound on the density. The results of this algorithm are demonstrated to be significantly better than the standard heuristic solution for a wide range of harvesting robot scenarios.

Suggested Citation

  • Moshe Mann & Boaz Zion & Dror Rubinstein & Rafi Linker & Itzhak Shmulevich, 2016. "The Orienteering Problem with Time Windows Applied to Robotic Melon Harvesting," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 246-267, January.
  • Handle: RePEc:spr:joptap:v:168:y:2016:i:1:d:10.1007_s10957-015-0767-z
    DOI: 10.1007/s10957-015-0767-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0767-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0767-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    2. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    3. Desrochers, Martin & Soumis, Francois, 1988. "A reoptimization algorithm for the shortest path problem with time windows," European Journal of Operational Research, Elsevier, vol. 35(2), pages 242-254, May.
    4. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    5. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    2. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    3. Faramroze G. Engineer & George L. Nemhauser & Martin W. P. Savelsbergh, 2011. "Dynamic Programming-Based Column Generation on Time-Expanded Networks: Application to the Dial-a-Flight Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 105-119, February.
    4. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    5. Zeighami, Vahid & Saddoune, Mohammed & Soumis, François, 2020. "Alternating Lagrangian decomposition for integrated airline crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 287(1), pages 211-224.
    6. Axel Parmentier, 2019. "Algorithms for non-linear and stochastic resource constrained shortest path," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 281-317, April.
    7. Bouarab, Hocine & El Hallaoui, Issmail & Metrane, Abdelmoutalib & Soumis, François, 2017. "Dynamic constraint and variable aggregation in column generation," European Journal of Operational Research, Elsevier, vol. 262(3), pages 835-850.
    8. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2017. "A shortest-path-based approach for the stochastic knapsack problem with non-decreasing expected overfilling costs," Discussion Papers on Economics 9/2017, University of Southern Denmark, Department of Economics.
    9. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    10. Tilk, Christian & Drexl, Michael & Irnich, Stefan, 2019. "Nested branch-and-price-and-cut for vehicle routing problems with multiple resource interdependencies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 549-565.
    11. Quoc Trung Bui & Yves Deville & Quang Dung Pham, 2016. "Exact methods for solving the elementary shortest and longest path problems," Annals of Operations Research, Springer, vol. 244(2), pages 313-348, September.
    12. Taccari, Leonardo, 2016. "Integer programming formulations for the elementary shortest path problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 122-130.
    13. Iman Dayarian & Guy Desaulniers, 2019. "A Branch-Price-and-Cut Algorithm for a Production-Routing Problem with Short-Life-Span Products," Transportation Science, INFORMS, vol. 53(3), pages 829-849, May.
    14. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    15. Dohn, Anders & Mason, Andrew, 2013. "Branch-and-price for staff rostering: An efficient implementation using generic programming and nested column generation," European Journal of Operational Research, Elsevier, vol. 230(1), pages 157-169.
    16. Charlotte Vilhelmsen & Richard M. Lusby & Jesper Larsen, 2017. "Tramp ship routing and scheduling with voyage separation requirements," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 913-943, October.
    17. S. Ardizzoni & L. Consolini & M. Laurini & M. Locatelli, 2022. "Shortest path with acceleration constraints: complexity and approximation algorithms," Computational Optimization and Applications, Springer, vol. 83(2), pages 555-592, November.
    18. Timo Hintsch & Stefan Irnich & Lone Kiilerich, 2021. "Branch-Price-and-Cut for the Soft-Clustered Capacitated Arc-Routing Problem," Transportation Science, INFORMS, vol. 55(3), pages 687-705, May.
    19. Lee, Chungmok, 2022. "A robust optimization approach with probe-able uncertainty," European Journal of Operational Research, Elsevier, vol. 296(1), pages 218-239.
    20. Timo Gschwind & Stefan Irnich, 2015. "Effective Handling of Dynamic Time Windows and Its Application to Solving the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 49(2), pages 335-354, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:1:d:10.1007_s10957-015-0767-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.