IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i4d10.1007_s10845-024-02375-6.html
   My bibliography  Save this article

Automated assembly quality inspection by deep learning with 2D and 3D synthetic CAD data

Author

Listed:
  • Xiaomeng Zhu

    (Scania CV AB (publ)
    KTH Royal Institute of Technology)

  • Pär Mårtensson

    (Scania CV AB (publ))

  • Lars Hanson

    (University of Skövde)

  • Mårten Björkman

    (KTH Royal Institute of Technology)

  • Atsuto Maki

    (KTH Royal Institute of Technology)

Abstract

In the manufacturing industry, automatic quality inspections can lead to improved product quality and productivity. Deep learning-based computer vision technologies, with their superior performance in many applications, can be a possible solution for automatic quality inspections. However, collecting a large amount of annotated training data for deep learning is expensive and time-consuming, especially for processes involving various products and human activities such as assembly. To address this challenge, we propose a method for automated assembly quality inspection using synthetic data generated from computer-aided design (CAD) models. The method involves two steps: automatic data generation and model implementation. In the first step, we generate synthetic data in two formats: two-dimensional (2D) images and three-dimensional (3D) point clouds. In the second step, we apply different state-of-the-art deep learning approaches to the data for quality inspection, including unsupervised domain adaptation, i.e., a method of adapting models across different data distributions, and transfer learning, which transfers knowledge between related tasks. We evaluate the methods in a case study of pedal car front-wheel assembly quality inspection to identify the possible optimal approach for assembly quality inspection. Our results show that the method using Transfer Learning on 2D synthetic images achieves superior performance compared with others. Specifically, it attained 95% accuracy through fine-tuning with only five annotated real images per class. With promising results, our method may be suggested for other similar quality inspection use cases. By utilizing synthetic CAD data, our method reduces the need for manual data collection and annotation. Furthermore, our method performs well on test data with different backgrounds, making it suitable for different manufacturing environments.

Suggested Citation

  • Xiaomeng Zhu & Pär Mårtensson & Lars Hanson & Mårten Björkman & Atsuto Maki, 2025. "Automated assembly quality inspection by deep learning with 2D and 3D synthetic CAD data," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2567-2582, April.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02375-6
    DOI: 10.1007/s10845-024-02375-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02375-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02375-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergey I. Nikolenko, 2021. "Synthetic Data for Deep Learning," Springer Optimization and Its Applications, Springer, number 978-3-030-75178-4, December.
    2. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin Dirk & Jonas L Fischer & Simon Schardt & Markus J Ankenbrand & Sabine C Fischer, 2023. "Recognition and reconstruction of cell differentiation patterns with deep learning," PLOS Computational Biology, Public Library of Science, vol. 19(10), pages 1-29, October.
    2. José A. Torres-León & Marco A. Moreno-Armendáriz & Hiram Calvo, 2024. "Representing the Information of Multiplayer Online Battle Arena (MOBA) Video Games Using Convolutional Accordion Auto-Encoder (A 2 E) Enhanced by Attention Mechanisms," Mathematics, MDPI, vol. 12(17), pages 1-19, September.
    3. Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
    4. Asif Khan & Hyunho Hwang & Heung Soo Kim, 2021. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
    5. Alvaro Figueira & Bruno Vaz, 2022. "Survey on Synthetic Data Generation, Evaluation Methods and GANs," Mathematics, MDPI, vol. 10(15), pages 1-41, August.
    6. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    7. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Ali Arishi, 2025. "Real-Time Household Waste Detection and Classification for Sustainable Recycling: A Deep Learning Approach," Sustainability, MDPI, vol. 17(5), pages 1-25, February.
    9. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    10. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Li, Xinyu & Cheng, Changming & Peng, Zhike, 2025. "Label-guided contrastive learning with weighted pseudo-labeling: A novel mechanical fault diagnosis method with insufficient annotated data," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    12. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    13. Michael Meiser & Ingo Zinnikus, 2024. "A Survey on the Use of Synthetic Data for Enhancing Key Aspects of Trustworthy AI in the Energy Domain: Challenges and Opportunities," Energies, MDPI, vol. 17(9), pages 1-29, April.
    14. Ze Wei & Hui Liu & Xuewen Tao & Kai Pan & Rui Huang & Wenjing Ji & Jianhai Wang, 2023. "Insights into the Application of Machine Learning in Industrial Risk Assessment: A Bibliometric Mapping Analysis," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    15. Ravil I. Mukhamediev & Yelena Popova & Yan Kuchin & Elena Zaitseva & Almas Kalimoldayev & Adilkhan Symagulov & Vitaly Levashenko & Farida Abdoldina & Viktors Gopejenko & Kirill Yakunin & Elena Muhamed, 2022. "Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges," Mathematics, MDPI, vol. 10(15), pages 1-25, July.
    16. Shouji Fujimoto & Atushi Ishikawa & Takayuki Mizuno, 2022. "Copula-Based Synthetic Data Generation in Firm-Size Variables," The Review of Socionetwork Strategies, Springer, vol. 16(2), pages 479-492, October.
    17. Andrei C Aioanei & Regine R Hunziker-Rodewald & Konstantin M Klein & Dominik L Michels, 2024. "Deep Aramaic: Towards a synthetic data paradigm enabling machine learning in epigraphy," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-29, April.
    18. Xiaorui Shao & Ahyoung Lee & Chang-Soo Kim, 2025. "DL-MSCNN: a general and lightweight framework for fault diagnosis with limited training samples," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 147-166, January.
    19. Delgado, Guillem & Cortés, Andoni & García, Sara & Loyo, Estíbaliz & Berasategi, Maialen & Aranjuelo, Nerea, 2023. "Methodology for generating synthetic labeled datasets for visual container inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    20. Jinhai Chen & Wenyuan Zhang & Heng Wang, 2021. "Intelligent bearing structure and temperature field analysis based on finite element simulation for sustainable and green manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 745-756, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02375-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.